905 resultados para Cytoskeleton, gamma-Tubulin, Biotechnology, Protein expression
Resumo:
The role of proteases in viral infection of the lung is poorly understood. Thus, we examined matrix metalloproteinases (MMPs) and cathepsin proteases in respiratory syncytial virus (RSV)-infected mouse lungs. RSV-induced gene expression for MMPs -2, -3, -7, -8, -9, -10, -12, -13, -14, -16, -17, -19, -20, -25, -27, and -28 and cathepsins B, C, E, G, H, K, L1, S, W, and Z in the airways of Friend leukemia virus B sensitive strain mice. Increased proteases were present in the bronchoalveolar lavage fluid (BALF) and lung tissue during infection. Mitochondrial antiviral-signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β-deficient mice were exposed to RSV. Mavs-deficient mice had significantly lower expression of airway MMP-2, -3, -7, -8, -9, -10, -12, -13, and -28 and cathepsins C, G, K, S, W, and Z. In lung epithelial cells, retinoic acid-inducible gene-1 (RIG-I) was identified as the major RIG-I-like receptor required for RSV-induced protease expression via MAVS. Overexpression of RIG-I or treatment with interferon-β in these cells induced MMP and cathepsin gene and protein expression. The significance of RIG-1 protease induction was demonstrated by the fact that inhibiting proteases with batimastat, E64 or ribavirin prevented airway hyperresponsiveness and enhanced viral clearance in RSV-infected mice.
Resumo:
The surface marker CD44 has been identified as one of several markers associated with cancer stem cells (CSC) in solid tumors, but its ubiquitous expression in many cell types, including hematopoietic cells, has hindered its use in targeting CSCs. In this study, 28 paired primary tumor and adjacent nontumor gastric tissue samples were analyzed for cell surface protein expression. Cells that expressed pan-CD44 were found to occur at significantly higher frequency in gastric tumor tissues. We identified CD44v8-10 as the predominant CD44 variant expressed in gastric cancer cells and verified its role as a gastric CSC marker by limiting dilution and serial transplantation assays. Parallel experiments using CD133 failed to enrich for gastric CSCs. Analyses of another 26 primary samples showed significant CD44v8-10 upregulation in gastric tumor sites. Exogenous expression of CD44v8-10 but not CD44 standard (CD44s) increased the frequency of tumor initiation in immunocompromised mice. Reciprocal silencing of total CD44 resulted in reduced tumor-initiating potential of gastric cancer cells that could be rescued by CD44v8-10 but not CD44s expression. Our findings provide important functional evidence that CD44v8-10 marks human gastric CSCs and contributes to tumor initiation, possibly through enhancing oxidative stress defense. In addition, we showed that CD44v8-10 expression is low in normal tissues. Because CD44 also marks CSCs of numerous human cancers, many of which may also overexpress CD44v8-10, CD44v8-10 may provide an avenue to target CSCs in other human cancers.
Resumo:
Paclitaxel is a microtubule inhibitory chemotherapeutic drug that is increasingly used for the treatment of solid tumours. In vitro studies have demonstrated that attenuating the spindle assemble checkpoint (SAC) alters the post-mitotic responses to paclitaxel. Furthermore, the aberrant expression of a number of the SAC proteins, MAD2, BUBR1, and Aurora A kinase, are associated with poor patient prognosis. We have identified a microRNA, miR-433, that regulates the expression of MAD2. Overexpression of miR-433 in Hela cells induced downregulation of MAD2 mRNA and protein expression. We have also shown that Hela cells overexpressing miR-433 and treated with paclitaxel are no longer capable of cyclin B stabilisation, and thus have lost the ability to activate the SAC in response to paclitaxel. In addition, cell viability assays showed that Hela cells overexpressing miR-433 and treated with paclitaxel have an attenuated response to paclitaxel compared with microRNA scrambled controls. We have characterised the levels of miR-433, MAD2 gene expression and MAD2 protein levels in a cohort of ovarian cancer cell lines. Cell viability assays on this cohort revealed that responsiveness to paclitaxel is associated with high MAD2 protein expression and lower miR-433 expression. We hypothesise that the expression of miR-433 when deregulated in cancer leads to altered MAD2 expression and a compromised SAC, a key feature underlying drug resistance to paclitaxel. In a pilot study of paired human breast tumour and normal breast tissue samples we have shown that expression levels of miR-433 are elevated in cancer tissue. Targeting this microRNA in cancer may improve the efficacy of paclitaxel in treating breast cancer and ovarian cancer.
Resumo:
Growth-promoting agents are continually misused for increasing animal growth and fraudulent gain in the meat industry, yet detection rates from conventional targeted testing for drug residues do not reflect this. This is because testing currently relies on direct detection of drugs or related metabolites and administrators of such compounds can take adaptive measures to avoid detection through the use of endogenous or unknown drugs, and low dose or combined mixtures. New detection methods are needed which focus on the screening of biological responses of an animal to such growth-promoting agents as it has been demonstrated that genomic, proteomic and metabolomics profiles are altered by xenobiotic intake. Therefore, an untargeted proteomics approach using comparative two-dimensional gel electrophoresis (2DE) was carried out to identify putative proteins altered in plasma after treatment with oestradiol, dexamethasone or prednisolone. Twenty-four male cattle were randomly assigned to four groups (n = 6) for experimental treatment over 40 days, namely a control group of non-treated cattle, and three groups administered 17β-oestradiol-3-benzoate (0.01 mg/kg, intramuscular), dexamethasone sodium phosphate (0.7 mg/day, per os) or prednisolone acetate (15 mg/day, per os), respectively. Plasma collected from each animal at day 25 post study initiation was subjected to proteomic analysis by 2DE for comparison of protein expression between treated and untreated animals. Analysis of acquired gel images revealed 22 plasma proteins which differed in expression by more than 50 % (p < 0.05) in treated animals compared to untreated animals. Proteins of interest underwent identification by LC–MS/MS analysis and were found to have associated roles in transport, blood coagulation, immune response and metabolism pathways. In this way, seven proteins are highlighted as novel biomarker candidates including transthyretin which is shown to be significantly increased in all treatment groups compared to control animals and potentially may find use as global markers of suspect anabolic practice.
Resumo:
The NS1 protein of influenza A viruses is the dedicated viral interferon (IFN)-antagonist. Viruses lacking NS1 protein expression cannot multiply in normal cells but are viable in cells deficient in their ability to produce or respond to IFN. Here we report an unbiased mutagenesis approach to identify positions in the influenza A NS1 protein that modulate the IFN response upon infection. A random library of virus ribonucleoproteins containing circa 40 000 point mutants in NS1 were transferred to infectious virus and amplified in MDCK cells unable to respond to interferon. Viruses that activated the interferon (IFN) response were subsequently selected by their ability to induce expression of green-fluorescent protein (GFP) following infection of A549 cells bearing an IFN promoter-dependent GFP gene. Using this approach we isolated individual mutant viruses that replicate to high titers in IFN-compromised cells but, compared to wild type viruses, induced higher levels of IFN in IFN-competent cells and had a reduced capacity to counteract exogenous IFN. Most of these viruses contained not previously reported NS1 mutations within either the RNA-binding domain, the effector domain or the linker region between them. These results indicate that subtle alterations in NS1 can reduce its effectiveness as an IFN antagonist without affecting the intrinsic capacity of the virus to multiply. The general approach reported here may facilitate the generation of replication-proficient, IFN-inducing virus mutants, that potentially could be developed as attenuated vaccines against a variety of viruses.
Resumo:
Purpose: Recent evidence suggests that neuroglial dysfunction and degeneration contributes to the etiology and progression of diabetic retinopathy. Advanced lipoxidation end products (ALEs) have been implicated in the pathology of various diseases, including diabetes and several neurodegenerative disorders. The purpose of the present study was to investigate the possible link between the accumulation of ALEs and neuroretinal changes in diabetic retinopathy.
Methods: Retinal sections obtained from diabetic rats and age-matched controls were processed for immunohistochemistry using antibodies against several well defined ALEs. In vitro experiments were also performed using a human Muller (Moorfields/Institute of Ophthalmology-Muller 1 [ MIO-M1]) glia cell line. Western blot analysis was used to measure the accumulation of the acrolein-derived ALE adduct N epsilon-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) in Muller cells preincubated with FDP-lysine-modified human serum albumin (FDP-lysine-HSA). Responses of Muller cells to FDP-lysine accumulation were investigated by analyzing changes in the protein expression of heme oxygenase-1 (HO-1), glial fibrillary acidic protein (GFAP), and the inwardly rectifying potassium channel Kir4.1. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF alpha) were determined by reverse transcriptase PCR (RT-PCR). Apoptotic cell death was evaluated by fluorescence-activated cell sorting (FACS) analysis after staining with fluorescein isothiocyanate (FITC)-labeled annexin V and propidium iodide.
Results: No significant differences in the levels of malondialdehyde-, 4-hydroxy-2-nonenal-, and 4-hydroxyhexenal-derived ALEs were evident between control and diabetic retinas after 4 months of diabetes. By contrast, FDP-lysine immunoreactivity was markedly increased in the Muller glia of diabetic rats. Time-course studies revealed that FDP-lysine initially accumulated within Muller glial end feet after only a few months of diabetes and thereafter spread distally throughout their inner radial processes. Exposure of human Muller glia to FDP-lysine-HSA led to a concentration-dependent accumulation of FDP-lysine-modified proteins across a broad molecular mass range. FDP-lysine accumulation was associated with the induction of HO-1, no change in GFAP, a decrease in protein levels of the potassium channel subunit Kir4.1, and upregulation of transcripts for VEGF, IL-6, and TNF-alpha. Incubation of Muller glia with FDP-lysine-HSA also caused apoptosis at high concentrations.
Conclusions: Collectively, these data strongly suggest that FDP-lysine accumulation could be a major factor contributing to the Muller glial abnormalities occurring in the early stages of diabetic retinopathy.
Resumo:
Purpose of review
Molecular markers for bladder cancer recurrence and
progression continue to drive many research programmes.
Translating the laboratory findings into the clinical environment
where these markers are used in clinical decision making has
proved problematic. In the clinical arena, stage and grade are
still the main focus for decisions about patient management.
There is however an evolution in bladder cancer research from
single-marker/single-pathway research to a more global
assessment of the tumour cell with DNA microarrays and
proteomics.
Recent findings
In the last year, DNA microarray assessment has revealed
several interesting molecular markers such as p33ING1 and
DEK. Parallel ‘conventional’ single-pathway research has
focused on new novel markers such as HER2/neu, survivin and
matrix metalloproteinase 2 (MMP-2). Molecular markers that
have a long-standing association with bladder cancer
progression such as p53, E-cadherin and Ki-67 have been
reviewed by both single-marker studies and by microarray
studies and their status remains important.
Summary
It is an exciting time in the molecular biology research of bladder
cancer as the focus changes to assess the global genetic and
protein expression within tumour cells. From such a wealth of
information it is likely that molecular markers will make the
translation from benchside to bedside.
Resumo:
Objective: Archipelago (AGO, also known as hCdc4, Fbw7, or Sel-10) is an F-box containing component of the SCF complex implicated in the ubiquitination and proteolysis of cyclin E and c-Myc, and found to be mutated in 16% of endometrial carcinomas. We have previously reported somatic mutations in AGO in 3/10 ovarian cancer cell lines, but the frequency of such mutations in primary ovarian cancer is unknown.
Methods: The coding sequence of AGO was analyzed in 95 primary sporadic ovarian tumors and 16 cases of familial ovarian cancer, and correlated with levels of cyclin E and c-Myc protein expression. Constructs encoding mutations in AGO were transfected into an AGO-null cell line to directly test their ability to regulate cyclin E and c-Myc levels.
Results: Mutations were present in only 2 of 95 sporadic cases: a premature stop within the WD domain (471 Ter) and a missense change near the F-box (S245T). Both primary tumor specimens containing these mutations showed high levels of cyclin E and c-Myc, but reconstitution of an AGO-null cell line with constructs encoding these mutations showed 471 Ter to be inactive in regulating endogenous cyclin E and c-Myc levels, while the S245T mutant was indistinguishable from wild-type. No germ-line mutations were found in familial cases of ovarian cancer.
Conclusion: Somatic AGO mutations are infrequent in primary ovarian cancers and are unlikely to contribute to familial ovarian cancer. Reconstitution experiments, rather than measuring tumor levels of cyclin E and c-Myc, provide an effective approach to determine the functional significance of AGO mutations identified in human cancers.
Resumo:
RATIONALE: Anaerobic bacteria are present in large numbers in the airways of people with cystic fibrosis (PWCF). In the gut, anaerobes produce short-chain fatty acids (SCFAs) that modulate immune/inflammatory processes.
OBJECTIVES: To investigate the capacity of anaerobes to contribute to CF airway pathogenesis via SCFAs.
METHODS: Samples from 109 PWCF were processed using anaerobic microbiological culture with bacteria present identified by 16S RNA sequencing. SCFAs levels in anaerobe supernatants and bronchoalveolar lavage (BAL) were determined by gas chromatography. The mRNA and/or protein expression of SCFAs receptors, GPR41 and GPR43, in CF and non-CF bronchial brushings, and 16HBE14o- and CFBE41o- cells were evaluated using RT-PCR, western blot, laser scanning cytometry and confocal microscopy. SCFAs-induced IL-8 secretion was monitored by ELISA.
MEASUREMENTS AND MAIN RESULTS: Fifty seven of 109 (52.3%) PWCF were anaerobe-positive. Prevalence increased with age, from 33.3% to 57.7% in PWCF under (n=24) and over 6 years (n=85). All evaluated anaerobes produced millimolar concentrations of SCFAs, including acetic, propionic and butyric acid. SCFAs levels were higher in BAL samples from adults than children. GPR41 levels were elevated in; CFBE41o- versus 16HBE14o- cells; CF versus non-CF bronchial brushings; 16HBE14o- cells after treatment with CFTR inhibitor CFTR(inh)-172, CF BAL, or inducers of endoplasmic reticulum stress. SCFAs induced a dose-dependent and pertussis toxin-sensitive IL-8 response in bronchial epithelial cells with a higher production of IL-8 in CFBE41o- than 16HBE14o- cells.
CONCLUSIONS: This study illustrates that SCFAs contribute to excessive production of IL-8 in CF airways colonized with anaerobes via upregulated GPR41.
Resumo:
BACKGROUND: We proposed to investigate the radiosensitizing properties of PBOX-15, a novel microtubule-disrupting agent, in a panel of cancer cell lines.
RESULTS: PBOX-15 treatment was associated with significant cell kill and increased radiosensitivity in all three cell lines tested. The number of surviving cells in response to the combined treatment was significantly less than PBOX -15 alone in 22Rv1 cells. In these cells, radiosensitisation correlated with induction of G2/M cell cycle arrest by PBOX-15. The compound sustained its activity and increased HIF-1Α expression under hypoxic conditions. PBOX-15 prevented onset of hypoxia-induced radioresistance in hypoxic prostate cells and reduced the surviving fraction of irradiated hypoxic cells to levels similar to those achieved under aerobic conditions.
METHODS: Clonogenic assays were used to determine sensitivity of a panel of cancer cell lines (22Rv1, A549, U87) to PBOX-15 alone or in combination with a single 2Gy dose fraction. Induction of cell cycle arrest and apoptosis was investigated in 22Rv1 prostate cancer cells. The cytotoxic properties of the compound under hypoxic conditions were correlated with Hypoxia Inducible Factor 1 alpha (HIF-1Α) gene and protein expression levels and its radiosensitisation potential was investigated in hypoxic 22Rv1 using clonogenic assays.
CONCLUSIONS: This preliminary data identifies the potential of PBOX-15 as a novel radiosensitising agent for the management of solid tumours and eradication of hypoxic cells.
Resumo:
Low-dose hyper-radiosensitivity (HRS) is the phenomenon whereby cells exposed to radiation doses of less than approximately 0.5 Gy exhibit increased cell killing relative to that predicted from back-extrapolating high-dose survival data using a linear-quadratic model. While the exact mechanism remains to be elucidated, the involvement of several molecular repair pathways has been documented. These processes in turn are also associated with the response of cells to O6-methylguanine (O6MeG) lesions. We propose a model in which the level of low-dose cell killing is determined by the efficiency of both pre-replicative repair by the DNA repair enzyme O6-methylguanine methyltransferase (MGMT) and post-replicative repair by the DNA mismatch repair (MMR) system. We therefore hypothesized that the response of cells to low doses of radiation is dependent on the expression status of MGMT and MMR proteins. MMR (MSH2, MSH6, MLH1, PMS1, PMS2) and MGMT protein expression signatures were determined in a panel of normal (PWR1E, RWPE1) and malignant (22RV1, DU145, PC3) prostate cell lines and correlated with clonogenic survival and cell cycle analysis. PC3 and RWPE1 cells (HRS positive) were associated with MGMT and MMR proficiency, whereas HRS negative cell lines lacked expression of at least one (MGMT or MMR) protein. MGMT inactivation had no significant effect on cell survival. These results indicate a possible role for MMR-dependent processing of damage produced by low doses of radiation.
Resumo:
The glucocorticoid (GC) receptor (GR) and Kruppel-like factor Klf4 are transcription factors that play major roles in skin homeostasis. However, whether these transcription factors cooperate in binding genomic regulatory regions in epidermal keratinocytes was not known. Here, we show that in dexamethasone-treated keratinocytes GR and Klf4 are recruited to genomic regions containing adjacent GR and KLF binding motifs to control transcription of the anti-inflammatory genes Tsc22d3 and Zfp36. GR- and Klf4 loss of function experiments showed total GR but partial Klf4 requirement for full gene induction in response to dexamethasone. In wild type keratinocytes induced to differentiate, GR and Klf4 protein expression increased concomitant with Tsc22d3 and Zfp36 up-regulation. In contrast, GR-deficient cells failed to differentiate or fully induce Klf4, Tsc22d3 and Zfp36 correlating with increased expression of the epithelium-specific Trp63, a known transcriptional repressor of Klf4. The identified transcriptional cooperation between GR and Klf4 may determine cell-type specific regulation and have implications for developing therapies for skin diseases.
Resumo:
Prostate cancer development and progression are associated with alterations in expression and function of elements of cytokine networks, some of which can activate multiple signaling pathways. Protein inhibitor of activated signal transducers and activators of transcription (PIAS)1, a regulator of cytokine signaling, may be implicated in the modulation of cellular events during carcinogenesis. This study was designed to investigate the functional significance of PIAS1 in models of human prostate cancer. We demonstrate for the first time that PIAS1 protein expression is significantly higher in malignant areas of clinical prostate cancer specimens than in normal tissues, thus suggesting a growth-promoting role for PIAS1. Expression of PIAS1 was observed in the majority of tested prostate cancer cell lines. In addition, we investigated the mechanism by which PIAS1 might promote prostate cancer and found that down-regulation of PIAS1 leads to decreased proliferation and colony formation ability of prostate cancer cell lines. This decrease correlates with cell cycle arrest in the G0/G1 phase, which is mediated by increased expression of p21(CIP1/WAF1). Furthermore, PIAS1 overexpression positively influences cell cycle progression and thereby stimulates proliferation, which can be mechanistically explained by a decrease in the levels of cellular p21. Taken together, our data reveal an important new role for PIAS1 in the regulation of cell proliferation in prostate cancer.
Resumo:
Oxaliplatin-based chemotherapy is the standard of care in patients with high-risk stage II and stage III colorectal cancer as well as in patients with advanced disease. Unfortunately, a large proportion of patients offered oxaliplatin fail to benefit from it. In the era of personalized treatment, there are strong efforts to identify biomarkers that will predict efficacy to oxaliplatin-based treatments. Excision repair cross-complementation group 1 (ERCC1) is a key element in the nucleotide excision repair (NER) pathway, which is responsible for repairing DNA adducts induced by platinum compounds. ERCC1 has recently been shown to be closely associated with outcome in patients with non-small-cell lung cancer (NSCLC): both high ERCC1 protein and gene expression are associated with resistance to cisplatin-based chemotherapy and better outcome without treatment. Therefore, ERCC1 has the potential to be used as a strong candidate biomarker, both predictive and prognostic, for colorectal cancer. This review will focus on the preclinical and clinical evidences supporting ERCC1 as a major molecule in oxaliplatin resistance. In addition, the important technologies used to assess ERCC1 gene and protein expression will be highlighted.
Resumo:
Background: Oncogenic mutations in BRAF occur in 8% of patients with advanced colorectal cancer (CRC) and have been shown to correlate with poor prognosis. In contrast to BRAF mutant (MT) melanoma, where the BRAF inhibitor Vemurafenib (PLX4032) has shown significant increases in response rates and overall survival, only minor responses to Vemurafenib treatment have been reported in BRAFMT CRC. Clear understanding of the vulnerabilities of BRAFMT CRC is important, and identification of druggable targets uniquely required by BRAFMT CRC tumours has the potential to fill a gap in the therapeutic armamentarium of advanced CRC. The aim of this study was to identify novel resistance mechanisms to MEK inhibition in BRAFMT CRC. Methods: Paired BRAFMT/WT RKO and VACO432 CRC cells and non-isogenic BRAFMT LIM2405, WiDR, HT-29 and COLO205 CRC cells were used. Changes in protein expression/activity were assessed by Western Blotting. Interactions between MEK1/2 and JAK1/2 or c-MET inhibition were assessed using the MTT cell viability assays and Flow Cytometry. Apoptosis was measured using Western Blotting for PARP, cleaved caspase 3, 8 and 9, and caspase 3/7 and 8 activity assays. Results: Treatment with MEK1/2 inhibitors AZD6244, trametinib, UO126 and PD98059 resulted in acute increases in STAT3 activity in the BRAFMT RKO and VACO432 cells but not in their BRAFWT clones and this was associated with increases in JAK2 activity. Inhibition of JAK/STAT3 activation using gene specific siRNA or small molecule inhibitors TG101348 or AZD1480, abrogated this survival response and resulted in synergy and significant increases in cell death when combined with MEK1/2 inhibitors AZD6244 or trametinib in BRAFMT CRC cells. The RTK c-MET is activated upstream of STAT3 following MEK1/2 inhibition. Inhibition of c-MET and MEK1/2, using pharmacological inhibitors (crizotinib and AZD6244), results in synergy and increased cell death in BRAFMT CRC cells. Conclusions: We have identified JAK/STAT3 activation as an important escape mechanism for BRAFMT CRC following MEK1/2 inhibition in vitro. Combinations of JAK/MEKi or MET/MEKi can be a potential novel treatment strategy for poor prognostic BRAFMT advanced CRC patients.