999 resultados para Cyclic radial wavefront shearing interference
Resumo:
Mitochondrial transcription termination factor 1, MTERF1, has been reported to couple rRNA gene transcription initiation with termination and is therefore thought to be a key regulator of mammalian mitochondrial ribosome biogenesis. The prevailing model is based on a series of observations published over the last two decades, but no in vivo evidence exists to show that MTERF1 regulates transcription of the heavy-strand region of mtDNA containing the rRNA genes. Here, we demonstrate that knockout of Mterf1 in mice has no effect on mitochondrial rRNA levels or mitochondrial translation. Instead, loss of Mterf1 influences transcription initiation at the light-strand promoter, resulting in a decrease of de novo transcription manifested as reduced 7S RNA levels. Based on these observations, we suggest that MTERF1 does not regulate heavy-strand transcription, but rather acts to block transcription on the opposite strand of mtDNA to prevent transcription interference at the light-strand promoter.
Resumo:
The characterization and understanding of body to body communication channels is a pivotal step in the development of emerging wireless applications such as ad-hoc personnel localisation and context aware body area networks (CABAN). The latter is a recent innovation where the inherent mobility of body area networks can be used to improve the coexistence of multiple co-located BAN users. Rather than simply accepting reductions in communication performance, sensed changes in inter-network co-channel interference levels may facilitate intelligent inter-networking; for example merging or splitting with other BANs that remain in the same domain. This paper investigates the inter-body interference using controlled measurements of the full mesh interconnectivity between two ambulatory BANs operating in the same environment at 2.45 GHz. Each of the twelve network nodes reported received signal strength to allow for the creation of carrier to interference ratio time series with an overall entire mesh sampling period of 54 ms. The results indicate that even with two mobile networks, it is possible to identify the onset of co-channel interference as the BAN users move towards each other and, similarly, the transition to more favourable physical layer channel conditions as they move apart. © 2011 IEEE.
Resumo:
NiTi wires and their weldments are commonly used in micro-electro-mechanical systems (MEMS), and in such applications, cyclic loading are commonly encountered. In this paper, the bending-rotation fatigue (BRF) test was used to study the bending fatigue behavior of NiTi wire laser weldment in the small-strain regime. The fracture mechanism, which includes crack initiation, crack growth and propagation of the weldment in the BRF test, was investigated with the aid of SEM fractography and discussed in terms of the microstructure. It was found that crack initiation was primarily surface-condition dependent. The cracks were found to initiate at the surface defects at the weld zone (WZ) surface, and the crack propagation was assisted by the gas inclusions in the WZ. The weldment was finally fractured in a ductile manner. The fatigue life was found to decrease with increasing surface strain and also with increasing bending frequency (controlled by the rotational speed in the BRF test). In comparison, the fatigue life of the unwelded NiTi wires was higher than their welded counterparts at all strain levels and bending frequencies. The decrease in fatigue resistance of the weldment could be attributed to the surface and microstructural defects introduced during laser welding.
Resumo:
NiTi wires of 0.5 mm diameter were laser welded using a CW 100-W fiber laser in an argon shielding environment with or without postweld heat-treatment (PWHT). The microstructure and the phases present were studied by scanning-electron microscopy (SEM), transmission-electron microscopy (TEM), and X-ray diffractometry (XRD). The phase transformation behavior and the cyclic stress–strain behavior of the NiTi weldments were studied using differential scanning calorimetry (DSC) and cyclic tensile testing. TEM and XRD analyses reveal the presence of Ni4Ti3 particles after PWHT at or above 623 K (350 °C). In the cyclic tensile test, PWHT at 623 K (350 °C) improves the cyclic deformation behavior of the weldment by reducing the accumulated residual strain, whereas PWHT at 723 K (450 °C) provides no benefit to the cyclic deformation behavior. Welding also reduces the tensile strength and fracture elongation of NiTi wires, but the deterioration could be alleviated by PWHT.
Resumo:
Many studies suggest a large capacity memory for briefly presented pictures of whole scenes. At the same time, visual working memory (WM) of scene elements is limited to only a few items. We examined the role of retroactive interference in limiting memory for visual details. Participants viewed a scene for 5?s and then, after a short delay containing either a blank screen or 10 distracter scenes, answered questions about the location, color, and identity of objects in the scene. We found that the influence of the distracters depended on whether they were from a similar semantic domain, such as "kitchen" or "airport." Increasing the number of similar scenes reduced, and eventually eliminated, memory for scene details. Although scene memory was firmly established over the initial study period, this memory was fragile and susceptible to interference. This may help to explain the discrepancy in the literature between studies showing limited visual WM and those showing a large capacity memory for scenes.
Resumo:
We cross match the GALEX and Kepler surveys to create a unique dataset with both ultraviolet (UV) measurements and highly precise photometric variability measurements in the visible light spectrum. As stellar activity is driven by magnetic field modulations, we have used UV emission from the magnetically heated gas in the stellar atmosphere to serve as our proxy for the more well-known stellar activity indicator, R' HK . The R' HK approximations were in turn used to estimate the level of astrophysical noise expected in radial velocity (RV) measurements and these were then searched for correlations with photometric variability. We find significant scatter in our attempts to estimate RV noise for magnetically active stars, which we attribute to variations in the phase and strength of the stellar magnetic cycle that drives the activity of these targets. However, for stars we deem to be magnetically quiet, we do find a clear correlation between photometric variability and estimated levels of RV noise (with variability up to ~10 m s–1). We conclude that for these quiet stars, we can use photometric measurements as a proxy to estimate the RV noise expected. As a result, the procedure outlined in this paper may help select targets best-suited for RV follow-up necessary for planet confirmation.
Resumo:
Body Area Networks are unique in that the large-scale mobility of users allows the network itself to travel across a diverse range of operating domains or even to enter new and unknown environments. This network mobility is unlike node mobility in that sensed changes in inter-network interference level may be used to identify opportunities for intelligent inter-networking, for example, by merging or splitting from other networks, thus providing an extra degree of freedom. This paper introduces the concept of context-aware bodynets for interactive environments using inter-network interference sensing. New ideas are explored at both the physical and link layers with an investigation based on a 'smart' office environment. A series of carefully controlled measurements of the mesh interconnectivity both within and between an ambulatory body area network and a stationary desk-based network were performed using 2.45 GHz nodes. Received signal strength and carrier to interference ratio time series for selected node to node links are presented. The results provide an insight into the potential interference between the mobile and static networks and highlight the possibility for automatic identification of network merging and splitting opportunities. © 2010 ACM.