967 resultados para Curves
Resumo:
In this paper, we discuss the design of a manually operated soil compaction machine that is being used to manufacture stabilized soil blocks (SSB). A case study of manufacturing more than three million blocks in a housing project using manually operated machines is illustrated. The paper is focussed on the design, development, and evaluation of a manually operated soil compaction machine for the production of SSB. It also details the machine design philosophy, compaction characteristics of soils, employment generation potential of small-scale stabilized soil block productions systems, and embodied energy. Static compaction of partially saturated soils was performed to generate force-displacement curves in a confined compaction process were generated. Based on the soil compaction data engineering design aspects of a toggle press are illustrated. The results of time and motion study on block production operations using manual machines are discussed. Critical path network diagrams were used for small-scale SSB production systems. Such production systems generate employment at a very low capital cost.
Resumo:
Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn1/3Co1/3Ni1/3PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a nonaqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.
Resumo:
The collocated measurements of aerosols size distribution (ASD) and aerosol optical thickness (AOT) are analyzed simultaneously using Grimm aerosol spectrometer and MICROTOP II Sunphotometer over Jaipur, capital of Rajasthan in India. The contrast temperature characteristics during winter and summer seasons of year 2011 are investigated in the present study. The total aerosol number concentration (TANC, 0.3-20 mu m) during winter season was observed higher than in summer time and it was dominated by fine aerosol number concentration (FANC < 2 mu m). Particles smaller than 0.8 mu m (at aerodynamic size) constitute similar to 99% of all particles in winter and similar to 90% of particles in summer season. However, particles greater than 2 mu m contribute similar to 3% and similar to 0.2% in summer and winter seasons respectively. The aerosols optical thickness shows nearly similar AOT values during summer and winter but corresponding low Angstrom Exponent (AE) values during summer than winter, respectively. In this work, Potential Source Contribution Function (PSCF) analysis is applied to identify locations of sources that influenced concentrations of aerosols over study area in two different seasons. PSCF analysis shows that the dust particles from That Desert contribute significantly to the coarse aerosol number concentration (CANC). Higher values of the PSCF in north from Jaipur showed the industrial areas in northern India to be the likely sources of fine particles. The variation in size distribution of aerosols during two seasons is clearly reflected in the log normal size distribution curves. The log normal size distribution curves reveals that the particle size less than 0.8 pm is the key contributor in winter for higher ANC. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Identification of homogeneous hydrometeorological regions (HMRs) is necessary for various applications. Such regions are delineated by various approaches considering rainfall and temperature as two key variables. In conventional approaches, formation of regions is based on principal components (PCs)/statistics/indices determined from time series of the key variables at monthly and seasonal scales. An issue with use of PCs for regionalization is that they have to be extracted from contemporaneous records of hydrometeorological variables. Therefore, delineated regions may not be effective when the available records are limited over contemporaneous time period. A drawback associated with the use of statistics/indices is that they do not provide effective representation of the key variables when the records exhibit non-stationarity. Consequently, the resulting regions may not be effective for the desired purpose. To address these issues, a new approach is proposed in this article. The approach considers information extracted from wavelet transformations of the observed multivariate hydrometeorological time series as the basis for regionalization by global fuzzy c-means clustering procedure. The approach can account for dynamic variability in the time series and its non-stationarity (if any). Effectiveness of the proposed approach in forming HMRs is demonstrated by application to India, as there are no prior attempts to form such regions over the country. Drought severity-area-frequency (SAF) curves are constructed corresponding to each of the newly formed regions for the use in regional drought analysis, by considering standardized precipitation evapotranspiration index (SPEI) as the drought indicator.
Resumo:
Self-assembly has been recognized as an efficient tool for generating a wide range of functional, chemically, or physically textured surfaces for applications in small scale devices. In this work, we investigate the stability of thin films of polymer solutions. For low concentrations of polymer in the solution, long length scale dewetting patterns are obtained with wavelength approximately few microns. Whereas, for concentrations above a critical value, bimodal dispersion curves are obtained with the dominant wavelength being up to two orders smaller than the usual dewetting length scale. We further show that the short wavelength corresponds to the phase separation in the film resulting in uniformly distributed high and low concentration regions. Interestingly, due to the solvent entropy, at very high concentration values of polymer, a re-entrant behaviour is observed with the dominant length scale now again corresponding to the dewetting wavelength. Thus, we show that the binary films of polymer solutions provide additional control parameters that can be utilized for generating functional textured surfaces for various applications. (C) 2016 AIP Publishing LLC.
Resumo:
General propagation properties and universal curves are given for double clad single mode fibers with inner cladding index higher or lower than the outer cladding index, using the parameter: inner cladding/core radii ratio. Mode cut-off conditions are also examined for the cases. It is shown that dispersion properties largely differ from the single clad single mode fiber case, leading to large new possibilities for extension of single mode operation for large wavelength tange. Paper demonstrates that how substantially we can extend the single mode operation range by using the raised inner cladding fiber. Throughout we have applied our own computations technique to find out the eigenvalue for a given modes. Detail derivations with all trivial mathematics for eigenmode equation are derived for each case. Paper also demonstrates that there is not much use of using depressed inner cladding fiber. We have also concluded that using the large inner cladding/inner core radius we can significantly increase the single mode operation range for the large wavelength region. (C) 2015 Elsevier GmbH. All rights reserved.
Resumo:
This work intends to demonstrate the effect of geometrically non-linear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting the three-dimensional warping of the cross-section. The only restriction in the present analysis is that the strains within each elastic body remain small (i.e., this work does not deal with materials exhibiting non-linear constitutive laws at the 3-D level). Here, all component bars of the mechanism are made of fiber-reinforced laminates. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction, results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis, the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here. The representative cross-sections of all component bars are analyzed using two different approaches: (1) Numerical Model and (2) Analytical Model. Four-bar mechanisms are analyzed using the above two approaches for Omega = 20 rad/s and Omega = pi rad/s and observed the same behavior in both cases. The noticeable snap-shots of the deformation shapes of the mechanism about 1000 frames are also reported using commercial software (I-DEAS + NASTRAN + ADAMS). The maximum out-of-plane warping of the cross-section is observed at the mid-span of bar-1, bar-2 and bar-3 are 1.5 mm, 250 mm and 1.0 mm, respectively, for t = 0:5 s. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports the effect of film thickness (50, 200, 400 and 800 nm) on the structural and magnetic properties of amorphous Tb-Dy-Fe-Co alloy thin films. All the films are found to exhibit perpendicular magnetic anisotropy (PMA) irrespective of the film thickness. The PMA is found to decrease with increase in film thickness due to the decrease in the magnetic texture and anisotropy energy. While the coercivity deduced from the out-of-plane magnetization curve increases with increasing film thickness, the in-plane coercivity exhibits weak thickness dependence. The irreversibility point in the thermo-magnetic curves obtained from field-cooled and zero-field-cooled measurements along the out-of-plane direction is found to shift towards higher temperature compared to the measurements in in-plane directions, indicating the presence of strong PMA.
Resumo:
We begin by giving an example of a smoothly bounded convex domain that has complex geodesics that do not extend continuously up to partial derivative D. This example suggests that continuity at the boundary of the complex geodesics of a convex domain Omega (sic) C-n, n >= 2, is affected by the extent to which partial derivative Omega curves or bends at each boundary point. We provide a sufficient condition to this effect (on C-1-smoothly bounded convex domains), which admits domains having boundary points at which the boundary is infinitely flat. Along the way, we establish a Hardy-Littlewood-type lemma that might be of independent interest.
Resumo:
A finite flexible perforated panel set in a differently perforated rigid baffle is considered. The radiation efficiency from such a panel is derived using a 2-D wavenumber domain formulation. This generalization is later used to represent a more practical case of a perforated panel fixed in an unperforated baffle. The perforations are in the form of an array of uniformly distributed circular holes. A complex impedance model for the holes available in the literature is used. An averaged fluid particle velocity is derived using the continuity equation and the surface pressure is derived using an appropriate momentum equation. The discontinuity in the perforate impedance (due to different hole dimensions or perforation ratio) at the panel-baffle interface is carefully taken into account. It is found that there exists a `coupling' of different wavenumbers of the spatially mean fluid particle velocity field. The change in the resonance frequencies and the modeshapes of the panel due to the perforations is taken into account using the Receptance method. Analytical expressions for the radiated power and radiation efficiency are derived in an integral form and numerical results are presented. Several comparisons are made to understand the radiation efficiency curves. Since both the resistive and reactive components of the hole impedance are taken into account, the model is directly applicable to micro-perforated panels also. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T-1 and T-2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S-0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S-0, T-1, and T-2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the n pi* triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents. (C) 2016 AIP Publishing LLC.
Resumo:
In gross motion of flexible one-dimensional (1D) objects such as cables, ropes, chains, ribbons and hair, the assumption of constant length is realistic and reasonable. The motion of the object also appears more natural if the motion or disturbance given at one end attenuates along the length of the object. In an earlier work, variational calculus was used to derive natural and length-preserving transformation of planar and spatial curves and implemented for flexible 1D objects discretized with a large number of straight segments. This paper proposes a novel idea to reduce computational effort and enable real-time and realistic simulation of the motion of flexible 1D objects. The key idea is to represent the flexible 1D object as a spline and move the underlying control polygon with much smaller number of segments. To preserve the length of the curve to within a prescribed tolerance as the control polygon is moved, the control polygon is adaptively modified by subdivision and merging. New theoretical results relating the length of the curve and the angle between the adjacent segments of the control polygon are derived for quadratic and cubic splines. Depending on the prescribed tolerance on length error, the theoretical results are used to obtain threshold angles for subdivision and merging. Simulation results for arbitrarily chosen planar and spatial curves whose one end is subjected to generic input motions are provided to illustrate the approach. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
We report the tunable dielectric constant of titania films with low leakage current density. Titanium dioxide (TiO2) films of three different thicknesses (36, 63 and 91 nm) were deposited by the consecutive steps of solution preparation, spin-coating, drying, and firing at different temperatures. The problem of poor adhesion between Si substrate and TiO2 insulating layer was resolved by using the plasma activation process. The surface roughness was found to increase with increasing thickness and annealing temperature. The electrical investigation was carried out using metal-oxide-semiconductor structure. The flat band voltage (V-FB), oxide trapped charge (Q(ot)), dielectric constant (kappa) and equivalent oxide thicknesses are calculated from capacitance-voltage (C-V) curves. The C-V characteristics indicate a thickness dependent dielectric constant. The dielectric constant increases from 31 to 78 as thickness increases from 36 to 91 nm. In addition to that the dielectric constant was found to be annealing temperature and frequency dependent. The films having thickness 91 nm and annealed at 600 A degrees C shows the low leakage current density. Our study provides a broad insight of the processing parameters towards the use of titania as high-kappa insulating layer, which might be useful in Si and polymer based flexible devices.
Resumo:
Using dimensional analysis and finite element calculations we derive several scaling relationships for conical indentation into elastic-perfectly plastic solids. These scaling relationships provide new insights into the shape of indentation curves and form the basis for understanding indentation measurements, including nano- and micro-indentation techniques. They are also helpful as a guide to numerical and finite element calculations of conical indentation problems. Finally, the scaling relationships are used to reveal the general relationships between hardness, contact area, initial unloading slope, and mechanical properties of solids.
Resumo:
The room temperature creep behaviors of Ce-based bulk metallic glasses were examined by the use of nanoindentation. The creep rate and creep rate sensitivity of Ce-based BMGs were derived from indentation creep curves. The low creep rate sensitivity of Ce-based BMGs indicates that the room temperature creep is dominated by localized shear flow. The experimental creep curves can be described by a generalized Kelvin model. Furthermore, the creep retardation spectrum is calculated for the Ce-based metallic glasses. The results showed that creep retardation spectrum consists of two relatively separated peaks with the well defined characteristic relaxation times.