929 resultados para Cu-Al-Ni-Mn alloys
Resumo:
Isochronal and isothermal ageing experiments have been carried out to determine the influence of 0.01 at. % addition of a second solute on the clustering rate in the quenched Al-4,4 a/o Zn alloy. The influence of quenching and ageing temperatures has been interpreted to obtain the apparent vacancy formation and vacancy migration energies in the various ternary alloys. Using a vacancy-aided clustering model the following values of binding free energy have been evaluated: Ce-0.18; Dy-0.24; Fe-0.18; Li-0.25; Mn-0.27; Nb-0.18; Pt-0.23; Sb-0.21; Si-0.30; Y-0.25; and Yb-0.23 (± 0.02 eV). These binding energy values refer to that between a solute atom and a single vacancy. The values of vacancy migration energy (c. 0.4 eV) and the experimental activation energy for solute diffusion (c. 1.1 eV) are unaffected by the presence of the ternary atoms in the Al-Zn alloy.
Resumo:
The variety of electron diffraction patterns arising from the decagonal phase has been explored using a stereographic analysis for generating the important zone axes as intersection points corresponding to important relvectors. An indexing scheme employing a set of five vectors and an orthogonal vector has been followed. A systematic tilting from the decagonal axis to one of the twofold axes has been adopted to generate a set of experimental diffraction patterns corresponding to the expected patterns from the stereographic analysis with excellent agreement.
Resumo:
Détermination de l'activité du calcium par la méthode d'effusion de Knudsen. Calcul, à partir de la distribution mesurée pour l'aluminium entre l'alliage et du fer pur, de l'activité de l'aluminium dans des alliages riches en calcium. Détermination en combinant les deux méthodes, des activités des deux composants et de l'énergie de Gibbs de mélange pour tout le domaine de composition. Calcul et analyse du facteur de structure concentration-concentration
Resumo:
The three phase equilibrium between alloy, spinel solid solution and α-alumina in the Fe-Ni-Al-O system has been fully characterized at 1823K as a function of alloy composition using both experimental and computational methods. The oxygen potential was measured using a solid state cell incorporating yttria-doped thoria as the electrolyte and Cr+ Cr2O3 as the reference electrode. Oxygen concentration of the alloy was determined by an inert gas fusion technique. The composition of the spinel solid solution, formed at the interface between the alloy and an alumina crucible, was determined by EPMA. The variation of the oxygen concentration and potential and composition of the spinel solid solution with mole fraction of nickel in the alloy have been computed using activities in binary Fe-Ni system, free energies of formation of end member spinels FeO•(1+x)Al2O3 and NiO•(1+x)Al2O3 and free energies of solution of oxygen in liquid iron and nickel, available in the literature. Activities in the spinel solid solution were computed using a cation distribution model. The variation of the activity coefficient of oxygen with alloy composition in Fe-Ni-O system was calculated using both the quasichemical model of Jacob and Alcock and the Wagner's model, with the correlation of Chiang and Chang. The computed results for the oxygen potential and the composition of the spinel solid solution are in good agreement with the measurements. The measured oxygen concentration lies between the values computed using models of Wagner and Jacob and Alcock. The results of the study indicate that the deoxidation hyper-surface in multicomponent systems can be computed with useful accuracy using data for end member systems and thermodynamic models.
Resumo:
Following growth doping strategy and using dopant oxides nanocrystals as dopant sources, we report here two different transition-metal ions doped in a variety of group II-VI semiconductor nanocrystals. Using manganese oxide and copper oxide nanocrystals as corresponding dopant sources, intense photoluminescence emission over a wide range of wavelength has been observed for different host nanocrystals. Interestingly, this single doping strategy is successful in providing such highly emissive nanocrystals considered here, in contrast with the literature reports that would suggest synthesis strategies to be highly specific to the particular dopant, host, or both. We investigate and discuss the possible mechanism of the doping process, supporting the migration of dopant ions from dopant oxide nanocrystals to host nanocrystals as the most likely scenario.
Resumo:
In situ EXAFS investigations have been carried out on Ni/γ-Al2O3 and Cu---Ni/γ-Al2O3 catalysts with different metal loadings, and prepared by different procedures. As-prepared Ni/γ-Al2O3 on calcination gives NiO and NiAl2O4-like phases on the surface, the proportion of the latter increasing with the increase in calcination temperature; the proportion of the NiO-like phase, on the other hand, increases with the metal loading. The reducibility of Ni/γ-Al2O3 to give metallic Ni on the surface directly depends on the proportion of the NiO-like phase present before reduction. Co-impregnating with Cu suppresses the formation of the surface aluminate and thereby favours the reduction to metallic Ni. This conclusion is clearly substantiated by our studies of bimetallic catalysts containing varying Cu/Ni ratios and also those prepared by the two-stage impregnation procedure.
Resumo:
The oxidation of liquid Al–Mg–Si alloys at 900–1400 °C was studied by thermogravimetric analysis (TGA). The development of a semi-protective surface layer of MgO/MgAl2O4 allows the continuous formation of an Al2O3-matrix composite containing an interpenetrating network of metal microchannels at 1000–1350 °C. An initial incubation period precedes bulk oxidation, wherein Al2O3 grows from a near-surface alloy layer by reaction of oxygen supplied by the dissolution of the surface oxides and Al supplied from a bulk alloy reservoir through the microchannel network. The typical oxidation rate during bulk growth displays an initial acceleration followed by a parabolic deceleration in a regime apparently limited by Al transport to the near-surface layer. Both regimes may be influenced by the Si content in this layer, which rises due to preferential Al and Mg oxidation. The growth rates increase with temperature to a maximum at ~1300 °C, with a nominal activation energy of 270 kJ/mole for an Al-2.85 wt. % Mg-5.4 wt. % Si alloy in O2 at furnace temperatures of 1000–1300 °C. An oscillatory rate regime observed at 1000–1075 °C resulted in a banded structure of varying Al2O3-to-metal volume fraction.
Resumo:
The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.
Resumo:
Hydrazinium metal chlorides, (N2H5)2MCl4·2H2O (where M = Fe, Co, Ni and Cu), have been prepared from the aqueous solutions of the respective metal chlorides and hydrazine hydrochloride (N2H4·HCl or N2H4·2HCl) and investigated by spectral and thermal analyses. The crystal structure of the iron complex has been determined by direct methods and refined by full-matrix least-squares to an R of 0.023 and Rw of 0.031 for 1495 independent reflections. The structure shows ferrous ion in an octahedral environment bonded by two hydrazinium cations, two chloride anions and two water molecules. In the complex cation [Fe(N2H5)2(H2O)2Cl2]2+, the coordinated groups are in trans positions.
Resumo:
The effect of thermal cycling on the load-controlled tension-tension fatigue behavior of a Ni-Ti-Fe shape memory alloy (SMA) at room temperature was studied. Considerable strain accumulation was observed to occur in this alloy under both quasi-static and cyclic loading conditions. Though, in all cases, steady-state is reached within the first 50-100 cycles, the accumulated steady-state strain, epsilon(p.ss), is much smaller in thermally cycled alloy. As a result, the fatigue performance of them was found to be significantly enhanced vis-a-vis the as-solutionized alloy. Furthermore, under load-controlled conditions, the fatigue life of Ni-Ti-Fe alloys was found to be exclusively dependent on epsilon(p.ss). Observations made by profilometry and differential scanning calorimetry (DSC) indicate that the 200-500% enhancement in fatigue life of thermally cycled alloy is due to the homogeneous distribution of the accumulated fatigue strain. (C) 2010 Elsevier B.V. All rights reserved.