999 resultados para Crystal Falls (Mich.)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we have fabricated eight different liquid-crystal lasers using the same gain medium but different homologues from the bimesogenic series alpha-(2',4-difluorobiphenyl-4'-yloxy)-omega-(4-cyanobiphenyl-4'-yloxy)alkanes, whereby the number of methylene units in the spacer chain varied from n=5 to n=12. To quantify the performance of these lasers, the threshold energy and the slope efficiency were extracted from the input-output characteristics of each laser. A clear odd-even effect was observed when both the excitation threshold and the slope efficiency were plotted as a function of the number of methylene units in the spacer chain. In all cases, the bimesogen lasers for which n is even exhibit lower threshold energies and higher slope efficiencies than those for which n is odd. These results are then interpreted in terms of the macroscopic physical properties of the liquid-crystalline compounds. In accordance with a previous study [S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, Phys. Rev. E. 74, 061709 (2006)], a combination of a large birefringence and high order parameters are found, in the most part, to correlate with low-threshold energy and high slope efficiency. This indicates that the threshold and slope efficiency are dominated by the host macroscopic properties as opposed to intermolecular interactions between the dye and the liquid crystal. However, certain differences in the slope efficiency could not be explained by the birefringence and order parameter values alone. Instead, we find that the slope efficiency is further increased by increasing the elastic constants of the liquid-crystal host so as to decrease the scattering losses incurred by local distortions in the director field under high-energy optical excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Band-edge liquid crystal lasers are of interest for a number of applications including laser projection displays. Herein, we demonstrate simultaneous red-green-blue lasing from a single liquid crystal sample by creating a two-dimensional laser array fabricated from dye-doped chiral nematic liquid crystals. By forming a pitch gradient across the cell, and optically pumping the sample using a lenslet array, a polychromatic laser array can be observed consisting simultaneously of red-green-blue colors. Specifically, the two-dimensional polychromatic array could be used to produce a laser-based display, with low speckle and wide color gamut, whereby no complex fabrication procedure is required to generate the individual 'pixels'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel transparent liquid-crystal-based microlens array has been fabricated using an array of vertically aligned multi-wall carbon nanofibers (MWCNFs) on a quartz substrate and its optical characteristics investigated. Electron beam lithography was used for the catalyst patterning on a quartz substrate to grow the MWCNF array of electrodes. The structure of the electrode array was determined through simulation to achieve the best optical performance. Both the patterned catalyst and growth parameters were optimized for optimal MWCNF properties. We report an in-depth optical characterization of these reconfigurable hybrid liquid crystal and nanofiber microlens arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbon nanotube-liquid-crystal (CNT-LC) nanophotonic device is a class of device based on the hybrid combination of a sparse array of multiwall carbon nanotube electrodes grown on a silicon surface in a liquid-crystal cell. The multiwall carbon nanotubes act as individual electrode sites that spawn an electric-field profile, dictating the refractive index profile within the liquid crystal and hence creating a series of graded index profiles, which form various optical elements such as a simple microlens array. We present the refractive index and therefore phase modulation capabilities of a CNT-LC nanophotonic device with experimental results as well as computer modeling and potential applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss some fundamental characteristics of a phase-modulating device suitable to holographically project a monochrome video frame with 1280 x 720 resolution. The phase-modulating device is expected to be a liquid crystal over silicon chip with silicon area similar to that of commercial devices. Its basic characteristics, such as number of pixels, bits per pixel, and pixel dimensions, are optimized in terms of image quality and optical efficiency. Estimates of the image quality are made from the noise levels and contrast, while efficiency is calculated by considering the beam apodization, device dead space, diffraction losses, and the sinc envelope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liquid-crystal light valve (LCLV) is a useful component for performing integration, thresholding, and gain functions in optical neural networks. Integration of the neural activation channels is implemented by pixelation of the LCLV, with use of a structured metallic layer between the photoconductor and the liquid-crystal layer. Measurements are presented for this type of valve, examples of which were prepared for two specific neural network implementations. The valve fabrication and measurement were carried out at the State Optical Institute, St. Petersburg, Russia, and the modeling and system applications were investigated at the Institute of Microtechnology, Neuchâtel, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tubular graphite cones (TGCs) with a single-crystal nanotip have been achieved by means of microwave plasma-assisted chemical vapor deposition using in-situ-evaporated Fe catalysts. The absence of the disorder-induced D band in Raman spectra revealed the single-crystalline feature of the nanotip. TGCs were found to stem from Fe catalytic carbon spherules on the order of 100 mum diameter, whose critical role in promoting both nucleation and plasma annealing in the formation of highly crystalline TGCs is discussed. The crystalline quality of such TGCs can be further verified by the investigation of their oxidative stability in air. All TGCs can survive up to 600 degrees C without any structural variations, and a few TGCs still survive with an anisotropic etched and stepped nanotip at temperatures up to 800 degrees C, much better than CNTs. Thus, TGCs with single crystalline nanotips are potential candidates for scanning probes in high-temperature oxygen-containing environments.

Relevância:

20.00% 20.00%

Publicador: