975 resultados para Covering Radius
Resumo:
We present a study of the growth of local, nonaxisymmetric perturbations in gravitationally coupled stars and gas in a differentially rotating galactic disk. The stars and gas are treated as two isothermal fluids of different velocity dispersions, with the stellar velocity dispersion being greater than that for the gas. We examine the physical effects of inclusion of a low-velocity dispersion component (gas) on the growth of non-axisymmetric perturbations in both stars and gas, as done for the axisymmetric case by Jog & Solomon. The amplified perturbations in stars and gas constitute trailing, material, spiral features which may be identified with the local spiral features seen in all spiral galaxies. The formulation of the two-fluid equations closely follows the one-fluid treatment by Goldreich & Lynden-Bell. The local, linearized perturbation equations in the sheared frame are solved to obtain the results for a temporary growth via swing amplification. The problem is formulated in terms of five dimensionless parameters-namely, the Q-factors for stars and gas, respectively; the gas mass fraction; the shearing rate in the galactic disk; and the length scale of perturbation. By using the observed values of these parameters, we obtain the amplifications and the pitch angles for features in stars and gas for dynamically distinct cases, as applicable for different regions of spiral galaxies. A real galaxy consisting of stars and gas may display growth of nonaxisymmetric perturbations even when it is stable against axisymmetric perturbations and/or when either fluid by itself is stable against non-axisymmetric perturbations. Due to its lower velocity dispersion, the gas exhibits a higher amplification than do the stars, and the amplified gas features are slightly more tightly wound than the stellar features. When the gas contribution is high, the stellar amplification and the range of pitch angles over which it can occur are both increased, due to the gravitational coupling between the two fluids. Thus, the two-fluid scheme can explain the origin of the broad spiral arms in the underlying old stellar populations of galaxies, as observed by Schweizer and Elmegreen & Elmegreen. The arms are predicted to be broader in gas-rich galaxies, as is indeed seen for example in M33. In the linear regime studied here, the arm contrast is shown to increase with radius in the inner Galaxy, in agreement with observations of external galaxies by Schweizer. These results follow directly due to the inclusion of gas in the problem.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube
Resumo:
The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.
Resumo:
This paper discusses the design and experimental verification of a geometrically simple logarithmic weir. The weir consists of an inward trapezoidal weir of slope 1 horizontal to n vertical, or 1 in n, over two sectors of a circle of radius R and depth d, separated by a distance 2t. The weir parameters are optimized using a numerical optimization algorithm. The discharge through this weir is proportional to the logarithm of head measured above a fixed reference plane for all heads in the range 0.23R less than or equal to h less than or equal to 3.65R within a maximum deviation of +/-2% from the theoretical discharge. Experiments with two weirs show excellent agreement with the theory by giving a constant average coefficient of discharge of 0.62. The application of this weir to the field of irrigation, environmental, and chemical engineering is highlighted.
Resumo:
Ordering of Mn3+ and Mn4+ ions occurs in the rare earth manganates of the general composition Ln(1-x)A(x)MnO(3) (Ln rare earth, A = Ca, Sr). Such charge-ordering is associated with antiferromagnetic and insulating properties. This phenomenon is to be contrasted with the ferromagnetic metallic behavior that occurs when double-exchange between the Mn3+ and Mn4+ ions predominates. Two distinct types of charge-ordering can be delineated. In one, a ferromagnetic metallic (FMM) state transforms to the charge-ordered (CO) state on cooling. In the other scenario, the CO state is found in the paramagnetic ground stale and there is no ferromagnetism down to the lowest temperatures. Magnetic fields transform the CO state to the FMM state, when the average radius of the A-site cations is sufficiently large ([r(A)] > 1.17 Angstrom). Chemical melting of the CO state by Cr3+ substitution in the Mn site is also found only when [r(A)] greater than or similar to 1.17 Angstrom. The effect of the size of the A-cations on the Mn-O-Mn angle is not enough to explain the observed variations of the charge-ordering temperature as well as the ferromagnetic Curie temperature T-c. An explanation based on a competition between the Mn and A-cation orbitals for sigma-bonding with the oxygen rho(sigma) orbitals is considered to account for the large changes in T-c and hence the true bandwidth, with [r(A]). Effects of radiation, electric field, and other factors on the CO state are discussed along with charge-ordering in other manganate systems. Complex phase transitions, accompanied by changes in electronic and magnetic properties, occur in manganates with critical values of(rA) Or bandwidth. Charge-ordering is found in layered manganates, BixCa1-xMnO3 and CaMnO3-delta.
Resumo:
In this paper we have investigated the composition-driven metal-insulator (MI) transitions in two ABO3 classes of perovskite oxides (LaNixCo1-xO3 and NaxTayW1-yO3) in the composition range close to the critical region by using the tunneling technique. Two types of junctions (point-contact and planar) have been used for the investigation covering the temperature range 0.4 K
Resumo:
We study the steady turn behaviours of some light motorcycle models on circular paths, using the commercial software package ADAMS-Motorcycle. Steering torque and steering angle are obtained for several path radii and a range of steady forward speeds. For path radii much greater than motorcycle wheelbase, and for all motorcycle parameters including tyre parameters held fixed, dimensional analysis can predict the asymptotic behaviour of steering torque and angle. In particular, steering torque is a function purely of lateral acceleration plus another such function divided by path radius. Of these, the first function is numerically determined, while the second is approximated by an analytically determined constant. Similarly, the steering angle is a function purely of lateral acceleration, plus another such function divided by path radius. Of these, the first is determined numerically while the second is determined analytically. Both predictions are verified through ADAMS simulations for various tyre and geometric parameters. In summary, steady circular motions of a given motorcycle with given tyre parameters can be approximately characterised by just one curve for steering torque and one for steering angle.
Resumo:
The frequently observed lopsidedness of the distribution of stars and gas in disc galaxies is still considered as a major problem in galaxy dynamics. It is even discussed as an imprint of the formation history of discs and the evolution of baryons in dark matter haloes. Here, we analyse a selected sample of 70 galaxies from the Westerbork Hi Survey of Spiral and Irregular Galaxies. The Hi data allow us to follow the morphology and the kinematics out to very large radii. In the present paper, we present the rotation curves and study the kinematic asymmetry. We extract the rotation curves of the receding and approaching sides separately and show that the kinematic behaviour of disc galaxies can be classified into five different types: symmetric velocity fields where the rotation curves of the receding and approaching sides are almost identical; global distortions where the rotation velocities of the receding and approaching sides have an offset that is constant with radius; local distortions leading to large deviations in the inner and negligible deviations in the outer parts (and vice versa); and distortions that divide the galaxies into two kinematic systems that are visible in terms of the different behaviour of the rotation curves of the receding and approaching sides, which leads to a crossing and a change in side. The kinematic lopsidedness is measured from the maximum rotation velocities, averaged over the plateau of the rotation curves. This gives a good estimate of the global lopsidedness in the outer parts of the sample galaxies. We find that the mean value of the perturbation parameter denoting the lopsided potential as obtained from the kinematic data is 0.056. Altogether, 36% of the sample galaxies are globally lopsided, which can be interpreted as the disc responding to a halo that was distorted by a tidal encounter. In Paper II, we study the morphological lopsidedness of the same sample of galaxies.
Resumo:
The distribution of stars and gas in many galaxies is asymmetric. This so-called lopsidedness is expected to significantly affect the dynamics and evolution of the disc, including the star formation activity. Here, we measure the degree of lopsidedness for the gas distribution in a selected sample of 70 galaxies from the Westerbork Hi Survey of Spiral and Irregular Galaxies. This complements our earlier work (Paper I) where the kinematic lopsidedness was derived for the same galaxies. The morphological lopsidedness is measured by performing a harmonic decomposition of the surface density maps. The amplitude of lopsidedness A(1), the fractional value of the first Fourier component, is typically quite high (about 0.1) within the optical disc and has a constant phase. Thus, lopsidedness is a common feature in galaxies and indicates a global mode. We measure A(1) out to typically one to four optical radii, sometimes even further. This is, on average, four times larger than the distance to which lopsidedness was measured in the past using near-IR as a tracer of the old stellar component, and therefore provides a new, more stringent constraint on the mechanism for the origin of lopsidedness. Interestingly, the value of A(1) saturates beyond the optical radius. Furthermore, the plot of A(1) versus radius shows fluctuations that we argue are due to local spiral features. We also try to explain the physical origin of this observed disc lopsidedness. No clear trend is found when the degree of lopsidedness is compared to a measure of the isolation or interaction probability of the sample galaxies. However, this does not rule out a tidal origin if the lopsidedness is long-lived. In addition, we find that the early-type galaxies tend to be more morphologically lopsided than the late-type galaxies. Both results together indicate that lopsidedness has a tidal origin.
Resumo:
Charge ordering in rare earth manganates of the type Ln(0.5)A(0.5)MnO(3) (Ln = rare earth, A = alkaline earth) is highly sensitive to the average radius of the A-site cations, [r(A)]. Tn the small [r(A)] regime (e.g., Y0.5Ca0.5MnO3), charge ordering occurs in the paramagnetic state, the transformation to an antiferromagnetic state occurring at still lower temperatures. At moderate [r(A)] values (e.g., Nd0.5Sr0.5MnO3), a ferromagnetic metallic state transforms to a charge-ordered antiferromagnetic state with cooling. These two distinct types of charge ordering and associated properties are explained in terms of the variation of the exchange couplings J(FM) and J(AFM) with [r(A)] and the invariance of the single-ion Jahn-Teller energy with [r(A)]. A qualitative temperature-[r(A)] phase diagram, consistent with the experimental observations, has been constructed to describe the properties of the manganates in the different [r(A)] regimes. (C) 1997 Academic Press.
Resumo:
Inelastic light scattering studies on a single crystal of electron-doped Ca(Fe0.95Co0.05)(2)As-2 superconductor, covering the tetragonal-to-orthorhombic structural transition as well as the magnetic transition at T-SM similar to 140 K and the superconducting transition temperature T-c similar to 23 K, reveal evidence for superconductivity-induced phonon renormalization. In particular, the phonon mode near 260 cm(-1) shows hardening below T-c, signaling its coupling with the superconducting gap. All three Raman active phonon modes show anomalous temperature dependence between room temperature and T-c, i.e. the phonon frequency decreases with lowering temperature. Further, the frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory based calculations, we show that the low temperature phase (T-c < T < T-SM) exhibits short-ranged stripe antiferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.
Resumo:
This paper presents a set of linear equations describing the temperature dependence of the saturated liquid thermal conductivity covering the region of engineering importance for the new hydrofluorocarbons (HFC) 32, 125, 134a, 143a, 152a and hydrochlorofluorocarbons (HCFC) 123, 124, 141b and 142b. Available experimental data in the literature have been considered to arrive at a correlation of the form lambda = A - BT. It is observed that there exists an appreciable discrepancy between various sources of data in spite of the same purity of samples used and the same measurement technique being adopted. The correlations obtained here could be useful in engineering design applications. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
In this paper we propose that the compressive tidal held in the centers of flat-core early-type galaxies and ultraluminous galaxies compresses molecular clouds producing dense gas observed in the centers of these galaxies. The effect of galactic tidal fields is usually considered disruptive in the literature. However, for some galaxies, the mass profile flattens toward the center and the resulting galactic tidal field is not disruptive, but instead it is compressive within the flat-core region. We have used the virial theorem to determine the minimum density of a molecular cloud to be stable and gravitationally bound within the tidally compressive region of a galaxy. We have applied the mechanism to determine the mean molecular cloud densities in the centers of a sample of flat-core, early-type galaxies and ultraluminous galaxies. For early-type galaxies with a core-type luminosity profile, the tidal held of the galaxy is compressive within half the core radius. We have calculated the mean gas densities for molecular gas in a sample of early-type galaxies which have already been detected in CO emission, and we obtain mean densities of [n] similar to 10(3)-10(6) cm(-3) within the central 100 pc radius. We also use our model to calculate the molecular cloud densities in the inner few hundred parsecs of a sample of ultraluminous galaxies. From the observed rotation curves of these galaxies we show that they have a compressive core within their nuclear region. Our model predicts minimum molecular gas densities in the range 10(2)-10(4) cm(-3) in the nuclear gas disks; the smaller values are applicable typically for galaxies with larger core radii. The resulting density values agree well with the observed range. Also, for large core radii, even fairly low-density gas (similar to 10(2) cm(-3)) can remain bound and stable close to the galactic center.
Resumo:
The velocity distribution for a vibrated granular material is determined in the dilute limit where the frequency of particle collisions with the vibrating surface is large compared to the frequency of binary collisions. The particle motion is driven by the source of energy due to particle collisions with the vibrating surface, and two dissipation mechanisms-inelastic collisions and air drag-are considered. In the latter case, a general form for the drag force is assumed. First, the distribution function for the vertical velocity for a single particle colliding with a vibrating surface is determined in the limit where the dissipation during a collision due to inelasticity or between successive collisions due to drag is small compared to the energy of a particle. In addition, two types of amplitude functions for the velocity of the surface, symmetric and asymmetric about zero velocity, are considered. In all cases, differential equations for the distribution of velocities at the vibrating surface are obtained using a flux balance condition in velocity space, and these are solved to determine the distribution function. It is found that the distribution function is a Gaussian distribution when the dissipation is due to inelastic collisions and the amplitude function is symmetric, and the mean square velocity scales as [[U-2](s)/(1 - e(2))], where [U-2](s) is the mean square velocity of the vibrating surface and e is the coefficient of restitution. The distribution function is very different from a Gaussian when the dissipation is due to air drag and the amplitude function is symmetric, and the mean square velocity scales as ([U-2](s)g/mu(m))(1/(m+2)) when the acceleration due to the fluid drag is -mu(m)u(y)\u(y)\(m-1), where g is the acceleration due to gravity. For an asymmetric amplitude function, the distribution function at the vibrating surface is found to be sharply peaked around [+/-2[U](s)/(1-e)] when the dissipation is due to inelastic collisions, and around +/-[(m +2)[U](s)g/mu(m)](1/(m+1)) when the dissipation is due to fluid drag, where [U](s) is the mean velocity of the surface. The distribution functions are compared with numerical simulations of a particle colliding with a vibrating surface, and excellent agreement is found with no adjustable parameters. The distribution function for a two-dimensional vibrated granular material that includes the first effect of binary collisions is determined for the system with dissipation due to inelastic collisions and the amplitude function for the velocity of the vibrating surface is symmetric in the limit delta(I)=(2nr)/(1 - e)much less than 1. Here, n is the number of particles per unit width and r is the particle radius. In this Limit, an asymptotic analysis is used about the Limit where there are no binary collisions. It is found that the distribution function has a power-law divergence proportional to \u(x)\((c delta l-1)) in the limit u(x)-->0, where u(x) is the horizontal velocity. The constant c and the moments of the distribution function are evaluated from the conservation equation in velocity space. It is found that the mean square velocity in the horizontal direction scales as O(delta(I)T), and the nontrivial third moments of the velocity distribution scale as O(delta(I)epsilon(I)T(3/2)) where epsilon(I) = (1 - e)(1/2). Here, T = [2[U2](s)/(1 - e)] is the mean square velocity of the particles.
Resumo:
Resonance Raman (RR) spectra are presented for p-nitroazobenzene dissolved in chloroform using 18 excitation Wavelengths, covering the region of (1)(n --> pi*) electronic transition. Raman intensities are observed for various totally symmetric fundamentals, namely, C-C, C-N, N=N, and N-O stretching vibrations, indicating that upon photoexcitation the excited-state evolution occurs along all of these vibrational coordinates. For a few fundamentals, interestingly, in p-nitroazobenzene, it is observed that the RR intensities decrease near the maxima of the resonant electronic (1)(n --> pi*) transition. This is attributed to the interference from preresonant scattering due to the strongly allowed (1)(pi --> pi*) electronic transition. The electronic absorption spectrum and the absolute Raman cross section for the nine Franck-Condon active fundamentals of p-nitroazobenzene have been successfully modeled using Heller's time-dependent formalism for Raman scattering. This employs harmonic description of the lowest energy (1)(n --> pi*) potential energy surface. The short-time isomerization dynamics is then examined from a priori knowledge of the ground-state normal mode descriptions of p-nitroazobenzene to convert the wave packet motion in dimensionless normal coordinates to internal coordinates. It is observed that within 20 fs after photoexcitation in p-nitroazobenzene, the N=N and C-N stretching vibrations undergo significant changes and the unsubstituted phenyl ring and the nitro stretching vibrations are also distorted considerably.