993 resultados para Coupling constant
Resumo:
A highly efficient palladium-catalyzed Suzuki coupling of aryl bromides with aiylboronic acids using phosphoramidite ligand 2c was developed. The phosphoramidite ligands are cost-effective and easily prepared from inexpensive, commercially available starting materials using a simple, efficient method. It represents an advance toward the discovery of low-cost catalyst systems for eventual availability. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
R. Zwiggelaar and M.G.F. Wilson, 'Single Mueller matrix description of the propagation of degree of polarisation in a uniformly anisotropic single-mode optical fibre', IEE Proceedings Optoelectronics 141 (6), 367-372 (1994)
Resumo:
Gough, John; Van Handel, R., (2007) 'Singular perturbation of quantum stochastic differential equations with coupling through an oscillator mode', Journal of Statistical Physics 127(3) pp.575-607 RAE2008
Resumo:
We show that if a language is recognized within certain error bounds by constant-depth quantum circuits over a finite family of gates, then it is computable in (classical) polynomial time. In particular, our results imply EQNC^0 ⊆ P, where EQNC^0 is the constant-depth analog of the class EQP. On the other hand, we adapt and extend ideas of Terhal and DiVincenzo [?] to show that, for any family
Resumo:
We present a distributed indexing scheme for peer to peer networks. Past work on distributed indexing traded off fast search times with non-constant degree topologies or network-unfriendly behavior such as flooding. In contrast, the scheme we present optimizes all three of these performance measures. That is, we provide logarithmic round searches while maintaining connections to a fixed number of peers and avoiding network flooding. In comparison to the well known scheme Chord, we provide competitive constant factors. Finally, we observe that arbitrary linear speedups are possible and discuss both a general brute force approach and specific economical optimizations.
Resumo:
In this thesis, the evanescent field sensing techniques of tapered optical nanofibres and microspherical resonators are investigated. This includes evanescent field spectroscopy of a silica nanofibre in a rubidium vapour; thermo-optical tuning of Er:Yb co-doped phosphate glass microspheres; optomechanical properties of microspherical pendulums; and the fabrication and characterisation of borosilicate microbubble resonators. Doppler-broadened and sub-Doppler absorption spectroscopic techniques are performed around the D2 transition (780.24 nm) of rubidium using the evanescent field produced at the waist of a tapered nanofibre with input probe powers as low as 55 nW. Doppler-broadened Zeeman shifts and a preliminary dichroic atomic vapour laser lock (DAVLL) line shape are also observed via the nanofibre waist with an applied magnetic field of 60 G. This device has the potential for laser frequency stabilisation while also studying the effects of atom-surface interactions. A non-invasive thermo-optical tuning technique of Er:Yb co-doped microspheres to specific arbitrary wavelengths is demonstrated particularly to 1294 nm and the 5S1/2F=3 to 5P3/2Fʹ=4 laser cooling transition of 85Rb. Reversible tuning ranges of up to 474 GHz and on resonance cavity timescales on the order of 100 s are reported. This procedure has prospective applications for sensing a variety of atomic or molecular species in a cavity quantum electrodynamics (QED) experiments. The mechanical characteristics of a silica microsphere pendulum with a relatively low spring constant of 10-4 Nm-1 are explored. A novel method of frequency sweeping the motion of the pendulum to determine its natural resonance frequencies while overriding its sensitivity to environmental noise is proposed. An estimated force of 0.25 N is required to actuate the pendulum by a displacement of (1-2) μm. It is suggested that this is of sufficient magnitude to be experienced between two evanescently coupled microspheres (photonic molecule) and enable spatial trapping of the micropendulum. Finally, single-input borosilicate microbubble resonators with diameters <100 μm are fabricated using a CO2 laser. Optical whispering gallery mode spectra are observed via evanescent coupling with a tapered fibre. A red-shift of (4-22) GHz of the resonance modes is detected when the hollow cavity was filled with nano-filtered water. A polarisation conversion effect, with an efficiency of 10%, is observed when the diameter of the coupling tapered fibre waist is varied. This effect is also achieved by simply varying the polarisation of the input light in the tapered fibre where the efficiency is optimised to 92%. Thus, the microbubble device acts as a reversible band-pass to band-stop optical filter for cavity-QED, integrated solid-state and semiconductor circuit applications.
Resumo:
Solar Energy is a clean and abundant energy source that can help reduce reliance on fossil fuels around which questions still persist about their contribution to climate and long-term availability. Monolithic triple-junction solar cells are currently the state of the art photovoltaic devices with champion cell efficiencies exceeding 40%, but their ultimate efficiency is restricted by the current-matching constraint of series-connected cells. The objective of this thesis was to investigate the use of solar cells with lattice constants equal to InP in order to reduce the constraint of current matching in multi-junction solar cells. This was addressed by two approaches: Firstly, the formation of mechanically stacked solar cells (MSSC) was investigated through the addition of separate connections to individual cells that make up a multi-junction device. An electrical and optical modelling approach identified separately connected InGaAs bottom cells stacked under dual-junction GaAs based top cells as a route to high efficiency. An InGaAs solar cell was fabricated on an InP substrate with a measured 1-Sun conversion efficiency of 9.3%. A comparative study of adhesives found benzocyclobutene to be the most suitable for bonding component cells in a mechanically stacked configuration owing to its higher thermal conductivity and refractive index when compared to other candidate adhesives. A flip-chip process was developed to bond single-junction GaAs and InGaAs cells with a measured 4-terminal MSSC efficiency of 25.2% under 1-Sun conditions. Additionally, a novel InAlAs solar cell was identified, which can be used to provide an alternative to the well established GaAs solar cell. As wide bandgap InAlAs solar cells have not been extensively investigated for use in photovoltaics, single-junction cells were fabricated and their properties relevant to PV operation analysed. Minority carrier diffusion lengths in the micrometre range were extracted, confirming InAlAs as a suitable material for use in III-V solar cells, and a 1-Sun conversion efficiency of 6.6% measured for cells with 800 nm thick absorber layers. Given the cost and small diameter of commercially available InP wafers, InGaAs and InAlAs solar cells were fabricated on alternative substrates, namely GaAs. As a first demonstration the lattice constant of a GaAs substrate was graded to InP using an InxGa1-xAs metamorphic buffer layer onto which cells were grown. This was the first demonstration of an InAlAs solar cell on an alternative substrate and an initial step towards fabricating these cells on Si. The results presented offer a route to developing multi-junction solar cell devices based on the InP lattice parameter, thus extending the range of available bandgaps for high efficiency cells.
Resumo:
Future high speed communications networks will transmit data predominantly over optical fibres. As consumer and enterprise computing will remain the domain of electronics, the electro-optical conversion will get pushed further downstream towards the end user. Consequently, efficient tools are needed for this conversion and due to many potential advantages, including low cost and high output powers, long wavelength Vertical Cavity Surface Emitting Lasers (VCSELs) are a viable option. Drawbacks, such as broader linewidths than competing options, can be mitigated through the use of additional techniques such as Optical Injection Locking (OIL) which can require significant expertise and expensive equipment. This thesis addresses these issues by removing some of the experimental barriers to achieving performance increases via remote OIL. Firstly, numerical simulations of the phase and the photon and carrier numbers of an OIL semiconductor laser allowed the classification of the stable locking phase limits into three distinct groups. The frequency detuning of constant phase values (ø) was considered, in particular ø = 0 where the modulation response parameters were shown to be independent of the linewidth enhancement factor, α. A new method to estimate α and the coupling rate in a single experiment was formulated. Secondly, a novel technique to remotely determine the locked state of a VCSEL based on voltage variations of 2mV−30mV during detuned injection has been developed which can identify oscillatory and locked states. 2D & 3D maps of voltage, optical and electrical spectra illustrate corresponding behaviours. Finally, the use of directly modulated VCSELs as light sources for passive optical networks was investigated by successful transmission of data at 10 Gbit/s over 40km of single mode fibre (SMF) using cost effective electronic dispersion compensation to mitigate errors due to wavelength chirp. A widely tuneable MEMS-VCSEL was established as a good candidate for an externally modulated colourless source after a record error free transmission at 10 Gbit/s over 50km of SMF across a 30nm single mode tuning range. The ability to remotely set the emission wavelength using the novel methods developed in this thesis was demonstrated.
Resumo:
Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio. © 2011 American Physical Society.
Resumo:
Mitsubishi Electric Research Laboratories, USA
Resumo:
-Transgenic mouse models have been developed to manipulate beta-adrenergic receptor (betaAR) signal transduction. Although several of these models have altered betaAR subtypes, the specific functional sequelae of betaAR stimulation in murine heart, particularly those of beta2-adrenergic receptor (beta2AR) stimulation, have not been characterized. In the present study, we investigated effects of beta2AR stimulation on contraction, [Ca2+]i transient, and L-type Ca2+ currents (ICa) in single ventricular myocytes isolated from transgenic mice overexpressing human beta2AR (TG4 mice) and wild-type (WT) littermates. Baseline contractility of TG4 heart cells was increased by 3-fold relative to WT controls as a result of the presence of spontaneous beta2AR activation. In contrast, beta2AR stimulation by zinterol or isoproterenol plus a selective beta1-adrenergic receptor (beta1AR) antagonist CGP 20712A failed to enhance the contractility in TG4 myocytes, and more surprisingly, beta2AR stimulation was also ineffective in increasing contractility in WT myocytes. Pertussis toxin (PTX) treatment fully rescued the ICa, [Ca2+]i, and contractile responses to beta2AR agonists in both WT and TG4 cells. The PTX-rescued murine cardiac beta2AR response is mediated by cAMP-dependent mechanisms, because it was totally blocked by the inhibitory cAMP analog Rp-cAMPS. These results suggest that PTX-sensitive G proteins are responsible for the unresponsiveness of mouse heart to agonist-induced beta2AR stimulation. This was further corroborated by an increased incorporation of the photoreactive GTP analog [gamma-32P]GTP azidoanilide into alpha subunits of Gi2 and Gi3 after beta2AR stimulation by zinterol or isoproterenol plus the beta1AR blocker CGP 20712A. This effect to activate Gi proteins was abolished by a selective beta2AR blocker ICI 118,551 or by PTX treatment. Thus, we conclude that (1) beta2ARs in murine cardiac myocytes couple to concurrent Gs and Gi signaling, resulting in null inotropic response, unless the Gi signaling is inhibited; (2) as a special case, the lack of cardiac contractile response to beta2AR agonists in TG4 mice is not due to a saturation of cell contractility or of the cAMP signaling cascade but rather to an activation of beta2AR-coupled Gi proteins; and (3) spontaneous beta2AR activation may differ from agonist-stimulated beta2AR signaling.
Resumo:
Regions of the hamster alpha 1-adrenergic receptor (alpha 1 AR) that are important in GTP-binding protein (G protein)-mediated activation of phospholipase C were determined by studying the biological functions of mutant receptors constructed by recombinant DNA techniques. A chimeric receptor consisting of the beta 2-adrenergic receptor (beta 2AR) into which the putative third cytoplasmic loop of the alpha 1AR had been placed activated phosphatidylinositol metabolism as effectively as the native alpha 1AR, as did a truncated alpha 1AR lacking the last 47 residues in its cytoplasmic tail. Substitutions of beta 2AR amino acid sequence in the intermediate portions of the third cytoplasmic loop of the alpha 1AR or at the N-terminal portion of the cytoplasmic tail caused marked decreases in receptor coupling to phospholipase C. Conservative substitutions of two residues in the C terminus of the third cytoplasmic loop (Ala293----Leu, Lys290----His) increased the potency of agonists for stimulating phosphatidylinositol metabolism by up to 2 orders of magnitude. These data indicate (i) that the regions of the alpha 1AR that determine coupling to phosphatidylinositol metabolism are similar to those previously shown to be involved in coupling of beta 2AR to adenylate cyclase stimulation and (ii) that point mutations of a G-protein-coupled receptor can cause remarkable increases in sensitivity of biological response.
Resumo:
Prolonged exposure of cells or tissues to drugs or hormones such as catecholamines leads to a state of refractoriness to further stimulation by that agent, known as homologous desensitization. In the case of the beta-adrenergic receptor coupled to adenylate cyclase, this process has been shown to be intimately associated with the sequestration of the receptors from the cell surface through a cAMP-independent process. Recently, we have shown that homologous desensitization in the frog erythrocyte model system is also associated with increased phosphorylation of the beta-adrenergic receptor. We now provide evidence that the phosphorylation state of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase, subcellular translocation, and recycling to the cell surface during the process of agonist-induced homologous desensitization. Moreover, we show that the receptor phosphorylation is reversed by a phosphatase specifically associated with the sequestered subcellular compartment. At 23 degrees C, the time courses of beta-adrenergic receptor phosphorylation, sequestration, and adenylate cyclase desensitization are identical, occurring without a lag, exhibiting a t1/2 of 30 min, and reaching a maximum at approximately 3 hr. Upon cell lysis, the sequestered beta-adrenergic receptors can be partially recovered in a light membrane vesicle fraction that is separable from the plasma membranes by differential centrifugation. The increased beta-adrenergic receptor phosphorylation is apparently reversed in the sequestered vesicle fraction as the sequestered receptors exhibit a phosphate/receptor stoichiometry that is similar to that observed under basal conditions. High levels of a beta-adrenergic receptor phosphatase activity appear to be associated with the sequestered vesicle membranes. The functional activity of the phosphorylated beta-adrenergic receptor was examined by reconstituting purified receptor with its biochemical effector the guanine nucleotide regulatory protein (Ns) in phospholipid vesicles and assessing the receptor-stimulated GTPase activity of Ns. Compared to controls, phosphorylated beta-adrenergic receptors, purified from desensitized cells, were less efficacious in activating the Ns GTPase activity. These results suggest that phosphorylation of the beta-adrenergic receptor leads to its functional uncoupling and physical translocation away from the cell surface into a sequestered membrane domain. In the sequestered compartment, the phosphorylation is reversed thus enabling the receptor to recycle back to the cell surface and recouple with adenylate cyclase.