875 resultados para Council for Scientific and Industrial Research (Australia)
Resumo:
The stabilization of alumina suspensions is key to the development of high-performance materials for the ceramic industry, which has motivated extensive research into synthetic polymers used as stabilizers. In this study, mimosa tannin extract and a chitosan derivative, that is, macromolecules obtained from renewable resources, are shown to be promising to replace synthetic polymers, yielding less viscous suspensions with smaller particles and greater fluidity, that is, more homogeneous suspensions that may lead to better-quality products. The functional groups of tannin present in mimosa extract and N,N,N-trimethylchitosan (TMC) are capable of establishing interactions with the alumina surface, thus leading to repulsion between the particles mainly due to steric and electrosteric mechanisms, respectively. The stabilization of the suspension induced by either TMC or mimosa tannin was confirmed by a considerable decrease in viscosity and average particle size, in comparison with alumina suspensions without stabilizing agents. The viscosity/average particle size decreased by 49/84% and 52/87% for suspensions with TMC and mimosa tannin, respectively. In addition, the increase in the absolute zeta potential upon addition of either TMC or mimosa tannin extract, especially at high pHs, points to an increased stability of the suspension. The feasibility of using derivatives of macromolecules from renewable sources to stabilize aqueous alumina suspensions was therefore demonstrated. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 58-66, 2010
Resumo:
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Two-dimensional and 3D quantitative structure-activity relationships studies were performed on a series of diarylpyridines that acts as cannabinoid receptor ligands by means of hologram quantitative structure-activity relationships and comparative molecular field analysis methods. The quantitative structure-activity relationships models were built using a data set of 52 CB1 ligands that can be used as anti-obesity agents. Significant correlation coefficients (hologram quantitative structure-activity relationships: r 2 = 0.91, q 2 = 0.78; comparative molecular field analysis: r 2 = 0.98, q 2 = 0.77) were obtained, indicating the potential of these 2D and 3D models for untested compounds. The models were then used to predict the potency of an external test set, and the predicted (calculated) values are in good agreement with the experimental results. The final quantitative structure-activity relationships models, along with the information obtained from 2D contribution maps and 3D contour maps, obtained in this study are useful tools for the design of novel CB1 ligands with improved anti-obesity potency.
Resumo:
Citrus sudden death (CSD) is a new disease of sweet orange and mandarin trees grafted on Rangpur lime and Citrus volkameriana rootstocks. It was first seen in Brazil in 1999, and has since been detected in more than four million trees. The CSD causal agent is unknown and the current hypothesis involves a virus similar to Citrus tristeza virus or a new virus named Citrus sudden death-associated virus. CSD symptoms include generalized foliar discoloration, defoliation and root death, and, in most cases, it can cause tree death. One of the unique characteristics of CSD disease is the presence of a yellow stain in the rootstock bark near the bud union. This region also undergoes profound anatomical changes. In this study, we analyse the metabolic disorder caused by CSD in the bark of sweet orange grafted on Rangpur lime by nuclear magnetic resonance (NMR) spectroscopy and imaging. The imaging results show the presence of a large amount of non-functional phloem in the rootstock bark of affected plants. The spectroscopic analysis shows a high content of triacylglyceride and sucrose, which may be related to phloem blockage close to the bud union. We also propose that, without knowing the causal CSD agent, the determination of oil content in rootstock bark by low-resolution NMR can be used as a complementary method for CSD diagnosis, screening about 300 samples per hour.