910 resultados para Corticosteroid-binding Globulin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gene encoding glycogen synthase in Neurospora crassa (gsn) is transcriptionally down-regulated when mycelium is exposed to a heat shock from 30 to 45 degrees C. The gsn promoter has one stress response element (STRE) motif that is specifically bound by heat shock activated nuclear proteins. In this work, we used biochemical approaches together with mass spectrometric analysis to identify the proteins that bind to the STRE motif and could participate in the gsn transcription regulation during heat shock. Crude nuclear extract of heat-shocked mycelium was prepared and fractionated by affinity chromatography. The fractions exhibiting DNA-binding activity were identified by electrophoretic mobility shift assay (EMSA) using as probe a DNA fragment containing the STRE motif DNA-protein binding activity was confirmed by Southwestern analysis. The molecular mass (MM) of proteins was estimated by fractionating the crude nuclear extract by SDS-PAGE followed by EMSA analysis of the proteins corresponding to different MM intervals. Binding activity was detected at the 30-50 MM kDa interval. Fractionation of the crude nuclear proteins by IEF followed by EMSA analysis led to the identification of two active fractions belonging to the pIs intervals 3.54-4.08 and 6.77-7.31. The proteins comprising the MM and pI intervals previously identified were excised from a 2-DE gel, and subjected to mass spectrometric analysis (MALDI-TOF/TOF) after tryptic digestion. The proteins were identified by search against the MIPS and MIT N. crassa databases and five promising candidates were identified. Their structural characteristics and putative roles in the gsn transcription regulation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quartz Crystal Microbalance (QCM) was used to monitor the mass changes on a quartz crystal surface containing immobilized lectins that interacted with carbohydrates. The strategy for lectin immobilization was developed on the basis of a multilayer system composed of Au-cystamine-glutaraldehyde-lectin. Each step of the immobilization procedure was confirmed by FTIR analysis. The system was used to study the interactions of Concanavalin A (ConA) with maltose and Jacalin with Fetuin. The real-time binding of different concentrations of carbohydrate to the immobilized lectin was monitored by means of QCM measurements and the data obtained allowed for the construction of Langmuir isotherm curves. The association constants determined for the specific interactions analyzed here were (6.4 +/- 0.2) X 10(4) M-1 for Jacalin-Fetuin and (4.5 +/- 0.1) x 10(2) M-1 for ConA-maltose. These results indicate that the QCM constitutes a suitable method for the analysis of lectin-carbohydrate interactions, even when assaying low molecular mass ligands such as disaccharides. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As frações protéicas foram isoladas dos cotiledones e os taninos isolados e purificados da casca da lentilha. A fração globulina correspondeu a 42,7 % do nitrogenio total da farinha de lentilha representando a fração protéica majoritária. Comparativamente ao metanol e metanol-HCl 1% a mistura acetona:água (7:3) representou o melhor meio extrator para os taninos da casca. A fração globulina isolada, nativa e aquecida (99oC/15 min), e caseína foram hidrolisadas com tripsina e pepsina na ausência de taninos e na presença de relações tanino:proteína de 1:40, 1:20, 1:10, 1:5 e 1:2,5. A hidrólise tríptica e péptica das proteínas não-aquecidas foram reduzidas com o aumento da relação tanino-proteína. A caseína não aquecida mostrou ser mais susceptível à tripsina que à globulina, o oposto sendo observado com a pepsina. O aquecimento seguido de interação com os taninos e hidrólise teve um efeito mais pronunciado sobre a digestão com tripsina que com pepsina para ambas proteínas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ground state masses and binding energies of the nucleon, lambda0, lambdac+ , lambdab0 are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the Qqq composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to standardize the analysis of zinc binding on human red blood cell (RBC) membranes in 20 normal adults. The displacement studies revealed that at the maximal stable zinc concentration tested (600 muM), 57% (mean) of the bound Zn-65 was displaced and to displace half maximal Zn-65, the stable zinc concentration was 300 muM. Scatchard plots revealed two classes of binding sites for zinc on RBC membranes: one with higher affinity, Kd = 1.20 x 10(-5) M (site I), and the other with lower affinity, Kd = 2.77 x 10(-4) M (site II). Binding sites occupancy was 97% means and 58.5% means for sites I and 11, respectively. The displacement was affected by temperature, membrane protein concentration, freezing, thawing, and dialysis. Other metal cations, including Co++, Fe++, and Mn++, had very little effect on Zn-65 displacement, in contrast copper displaced Zn-65 from its binding sites on RBC membranes. Zinc binding to RBC membranes was rapid and readily reversible in a dynamic equilibrium with its binding sites. It is anticipated that this method will be applicable to studies of a wide variety of diseases specifically related to zinc metabolism in humans as well as in animals. (C) 1994 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural specificity of alpha-PMTX, a novel peptide toxin derived from wasp venom has been studied on the neuromuscular synapse in the walking leg of the lobster. alpha-PMTX is known to induce repetitive action potentials in the presynaptic axon due to sodium channel inactivation. We synthesized 29 analogs of alpha-PMTX by substituting one or two amino acids and compared threshold concentrations of these mutant toxins for inducing repetitive action potentials. In 13 amino acid residues of alpha-PMTX, Arg-1, Lys-3 and Lys-12 regulate the toxic activity because substitution of these basic amino acid residues with other amino acid residues greatly changed the potency. Determining the structure-activity relationships of PMTXs will help clarifying the molecular mechanism of sodium channel inactivation. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the hyperspherical adiabatic approach in a coupled-channel calculation, we present precise binding energies of excitons trapped by impurity donors in semiconductors within the effective-mass approximation. Energies for such three-body systems are presented as a function of the relative electron-hole mass sigma in the range 1 less than or equal to1/sigma less than or equal to6, where the Born-Oppenheimer approach is not efficiently applicable. The hyperspherical approach leads to precise energies using the intuitive picture of potential curves and nonadiabatic couplings in an ab initio procedure. We also present an estimation for a critical value of sigma (sigma (crit)) for which no bound state can be found. Comparisons are given with results of prior work by other authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407 +/- 15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed beta(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-beta-D-glucopyranose units in chitin. The full-lengthamino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 angstrom resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (beta alpha)(8) barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular matrix protein laminin binds specifically to yeast forms of Paracoccidioides brasiliensis and enhances adhesion of the fungus to the surface of epithelial Madin-Darby canine kidney cells in vitro. Immunoblotting of fungal extracts showed that the gp43 glycoprotein is responsible for adhesion. This was confirmed by binding assays using purified gp43, with a K-d of 3.7 nM. The coating of P. brasiliensis yeast forms with laminin before injection into hamster testicles enhanced the fungus virulence, resulting in a faster and more severe granulomatous disease. These results indicate that interaction of fungi with extracellular matrix elements may constitute a basis for the evolution of fungal infection toward regional spreading and dissemination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of isoniazid (INH) drug resistance mechanism in Mycobacterium tuberculosis should provide significant insight for the development of newer anti-tubercular agents able to control INH-resistant tuberculosis (TB). The inhA-encoded 2-trans enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the inhA structural gene have been found in INH-resistant clinical isolates of M. tuberculosis, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3 angstrom, 2.2 angstrom, 2.0 angstrom, and 1.9 angstrom. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (k(off)) were eleven, five, and tenfold higher for, respectively, I21V, I47T and S94A INH-resistant mutants of InhA as compared to INH-sensitive wildtype InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present evidence that water molecules are actively involved on the control of binding affinity and binding site discrimination of a drug to natural DNA. In a previous study, the effect of water activity (a(w)) on the energetic parameters of actinomycin-D intercalation to natural DNA was determined using the osmotic stress method (39). This earlier study has shown evidence that water molecules act as an allosteric regulator of ligand binding to DNA via the effect of water activity on the long-range stability of the DNA secondary structure. In this work we have carried out DNA circularization experiments using the plasmid pUC18 in the absence of drugs and in the presence of different neutral solutes to evaluate the contribution of water activity to the energetics of DNA helix unwinding. The contribution of water to these independent reactions were made explicit by the description of how the changes in the free energy of ligand binding to DNA and in the free energy associated with DNA helix torsional deformation are linked to a(w) via changes in structural hydration. Taken together, the results of these studies reveal an extensive linkage between ligand binding affinity and site binding discrimination, and long range helix conformational changes and DNA hydration, This is strong evidence that water molecules work as a classical allosteric regulator of ligand binding to the DNA via its contribution to the stability of the double helix secondary structure, suggesting a possible mechanism by which the biochemical machinery of DNA processing takes advantage of the low activity of water into the cellular milieu.