895 resultados para Corrosion and anti-corrosives


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Severe preeclampsia is associated with increased neutrophil activation and elevated serum soluble endoglin (sEng) and soluble Flt-1 (sFlt-1) in the maternal circulation. To dissect the contribution of systemic inflammation and anti-angiogenic factors in preeclampsia, we investigated the relationships between the circulating markers of neutrophil activation and anti-angiogenic factors in severe preeclampsia or systemic inflammatory state during pregnancy. Methods and results - Serum sEng, sFlt-1, placenta growth factor, interleukin-6 (IL-6), calprotectin, and plasma a-defensins concentrations were measured by ELISA in 88 women of similar gestational age stratified as: severe preeclampsia (sPE, n = 45), maternal systemic inflammatory response (SIR, n = 16) secondary to chorioamnionitis, pyelonephritis or appendicitis; and normotensive controls (CRL, n = 27). Neutrophil activation occurred in sPE and SIR, as a-defensins and calprotectin concentrations were two-fold higher in both groups compared to CRL (P < 0.05 for each). IL-6 concentrations were highest in SIR (P < 0.001), but were higher in sPE than in CRL (P < 0.01). sFlt-1 (P < 0.001) and sEng (P < 0.001) were ˜20-fold higher in sPE compared to CRL, but were not elevated in SIR. In women with sPE, anti-angiogenic factors were not correlated with markers of neutrophil activation (a-defensins, calprotectin) or inflammation (IL-6). Conclusions - Increased systemic inflammation in sPE and SIR does not correlate with increased anti-angiogenic factors, which were specifically elevated in sPE indicating that excessive systemic inflammation is unlikely to be the main contributor to severe preeclampsia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquids and gases produced through biomass pyrolysis have potential as renewable fuels to replace fossil fuels in conventional internal combustion engines. This review compares the properties of pyrolysis fuels, produced from a variety of feedstocks and using different pyrolysis techniques, against those of fossil fuels. High acidity, the presence of solid particles, high water content, high viscosity, storage and thermal instability, and low energy content are typical characteristics of pyrolysis liquids. A survey of combustion, performance and exhaust emission results from the use of pyrolysis liquids (both crude and up-graded) in compression ignition engines is presented. With only a few exceptions, most authors have reported difficulties associated with the adverse properties of pyrolysis liquids, including: corrosion and clogging of the injectors, long ignition delay and short combustion duration, difficulty in engine start-up, unstable operation, coking of the piston and cylinders and subsequent engine seizure. Pyrolysis gas can be used more readily, either in spark ignition or compression ignition engines; however, NO reduction techniques are desirable. Various approaches to improve the properties of pyrolysis liquids are discussed and a comparison of the properties of up-graded vs. crude pyrolysis liquid is included. Further developments in up-gradation techniques, such as hydrocracking and bio-refinery approaches, could lead to the production of green diesel and green gasoline. Modifications required to engines for use with pyrolysis liquids, for example in the fuel supply and injection systems, are discussed. Storage stability and economic issues are also reviewed. Our study presents recent progress and important R&D areas for successful future use of pyrolysis fuels in internal combustion engines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restricted rotation in indol-3-yl-N-alkyl- and indol-3-yl-N,N-dialkyl-glyoxalylamides can in principle give the syn-periplanar and anti-periplanar rotamers. In asymmetrically disubstituted glyoxalylamides, steric effects lead to the occurrence of both rotamers, as observed by NMR spectroscopy. The predominant peak corresponds with the anti rotamer, in which the bulkier alkyl group is orientated trans to the amide carbonyl group. In monoalkylated glyoxalylamides, only one set of peaks is observed, consistent with the presence of only one rotamer. Crystal structures of 5-methoxyindole-3-yl-N-tert-butylglyoxalylamide, indole-3-yl-N-tert-butylglyoxalylamide, and indole-3-yl-N-isopropylglyoxalylamide reported here reveal a syn conformation held by an intramolecular N-HO hydrogen bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heme oxygenase (Hmox) is an endogenous system that offers protection against placental cytotoxic damage associated with preeclampsia. The Hmox1/carbon monoxide (CO) pathway inhibits soluble Flt-1 (sFlt-1) and soluble Endoglin (sEng). More importantly, statins induce Hmox1 and suppress the release of sFlt-1 and sEng; thus, statins and Hmox1 activators are potential novel therapeutic agents for treating preeclampsia. The contribution of the Hmox system to the pathogenesis of preeclampsia has been further indicated by the incidence of preeclampsia being reduced by a third in smokers, who had reduced levels of circulating sFlt-1. Interestingly, preeclamptic women exhale less CO compared with women with healthy pregnancies. Hmox1 is reduced prior to the increase in sFlt-1 as Hmox1 mRNA expression in the trophoblast is decreased in the first trimester in women who go on to develop preeclampsia. Induction of Hmox1 or exposure to CO or bilirubin has been shown to inhibit the release of sFlt-1 and sEng in animal models of preeclampsia. The functional benefit of statins and Hmox1 induction in women with preeclampsia is valid not only because they inhibit sFlt-1 release, but also because statins and Hmox1 are associated with anti-apoptotic, anti-inflammatory, and anti-oxidant properties. The StAmP trial is the first randomized control trial (RCT) evaluating the use of pravastatin to ameliorate severe preeclampsia. This proof-of-concept study will pave the way for future global RCT, the success of which will greatly contribute to achieving the United Nations Millennium Development Goals (MDG4 and MDG5) and offering an affordable and easily accessible therapy for preeclampsia. © 2014 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significance: Oxidized phospholipids are now well-recognized as markers of biological oxidative stress and bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization, and is responsible for the expansion of oxidative lipidomics. Recent Advances: Studies of oxidized phospholipids in biological samples, both from animal models and clinical samples, have been facilitated by the recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual compounds or groups of compounds with common features, which greatly improves the sensitivity and specificity of detection. Application of these methods have enabled important advances in understanding the mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy and cystic fibrosis, and offer potential for developing biomarkers of molecular aspects of the diseases. Critical Issues and Future Directions: The future in this field will depend on development of improved MS technologies, such as ion mobility, novel enrichment methods and databases and software for data analysis, owing to the very large amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional exciting direction emerging that can be expected to advance understanding of physiology and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Book Review: The Fevered Novel from Balzac to Bernanos: Frenetic Catholicism in Crisis, Delirium and Revolution. By Francesco Manzini. (IGRS Books). London: Institute of Germanic and Romance Studies, 2011. 264 pp. Full text: This monograph is an important and compelling account of a novelistic tradition that stretches from Georges Bernanos back to Balzac, by way of Léon Bloy, Joris-Karl Huysmans, and Barbey d'Aurevilly. Depending on a master plot that evokes Maistrean themes of blood, sacrifice, and redemption, working in a feverish female body, this canon combines Romantic freneticism and anti-Enlightenment religion to create a compound that Francesco Manzini calls ‘frenetic Catholicism’. The theme of fever, Manzini tells us, was commented on by Huysmans in writing about Barbey d'Aurevilly. When André Gide read Bernanos's Sous le soleil de Satan, he dismissed it as a rehash of Bloy and Barbey. In this present work Manzini aims to make us aware once more of the gradually intensifying themacity of fever in writings more usually classed in theologo-literary categories. His analysis encompasses (though is not restricted to) Balzac's Ursule Mirouët, Barbey d'Aurevilly's Un prêtre marié, Huysmans's En rade, Bloy's Le Désespéré and La Femme pauvre, and Bernanos's Nouvelle histoire de Mouchette. Thus, as Manzini argues in his conclusion, between the freneticism of the Romantics and that of the surrealists this corpus represents an intermediary wave of freneticism, foregrounding fever, hyperconsciousness, dreamlike episodes, and female automatism. Manzini's knowledge of, and ease amidst, the sources is constantly impressive. Much like Richard Griffiths before him (The Reactionary Revolution: The Catholic Revival in French Literature, 1870–1914 (London: Constable, 1966)), he has read both the bad novels and the good ones. For that we are in his debt. His commentary thrives on the oddities of his subjects. He points quite rightly to the peculiar hubris of writers whose contempt for the secular excesses of scientism leads them down a cul-de-sac of primitive medical quackery. Likewise, he underlines how Zola's attempt to unwrite Barbey — exorcising the former's anti-Romantic animus, as much as scratching his anticlerical itch — leads him to recapitulate Barbey's religious authoritarianism in the secular vernacular of patriarchy. Les espèces qui se rapprochent se mangent, to paraphrase Bernanos (Les Grands Cimetières sous la lune). In spite of all Manzini's tightly organized analysis, however, this reader wonders whether the fevered novel ‘best allowed contemporaries — and now […] literary critics and historians — to imagine the issues at stake in the amorphous scientistic, religious, and political debates’ of the period (p. 17). Below the ideological clashes of nineteenth-century science and religion, the two contending dynamics of anthropocentrism and theocentrism are attested and, it can be argued, even more perfectly dramatized in other Catholic literature (Charles Péguy's poetry, for example). In these terms, what distinguishes the Catholic frenetics from their Romantic or surrealist counterparts is that their fevered subject represents an attempt to build a road out of what Canadian philosopher Charles Taylor calls ‘buffered’ individuality, and back towards the theocentric porous subject who is open to divine influence. By way of minor corrections, nuns do not take holy orders (p. 94) but make religious profession by taking vows. Also, the last Eucharistic host is not extreme unction (p. 119) but viaticum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presently monoethanolamine (MEA) remains the industrial standard solvent for CO2 capture processes. Operating issues relating to corrosion and degradation of MEA at high temperatures and concentrations, and in the presence of oxygen, in a traditional PCC process, have introduced the requisite for higher quality and costly stainless steels in the construction of capture equipment and the use of oxygen scavengers and corrosion inhibitors. While capture processes employing MEA have improved significantly in recent times there is a continued attraction towards alternative solvents systems which offer even more improvements. This movement includes aqueous amine blends which are gaining momentum as new generation solvents for CO2 capture processes. Given the exhaustive array of amines available to date endless opportunities exist to tune and tailor a solvent to deliver specific performance and physical properties in line with a desired capture process. The current work is focussed on the rationalisation of CO2 absorption behaviour in a series of aqueous amine blends incorporating monoethanolamine, N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) as solvent components. Mass transfer/kinetic measurements have been performed using a wetted wall column (WWC) contactor at 40°C for a series of blends in which the blend properties including amine concentration, blend ratio, and CO2 loadings from 0.0-0.4 (moles CO2/total moles amine) were systematically varied and assessed. Equilibrium CO2 solubility in each of the blends has been estimated using a software tool developed in Matlab for the prediction of vapour liquid equilibrium using a combination of the known chemical equilibrium reactions and constants for the individual amine components which have been combined into a blend.From the CO2 mass transfer data the largest absorption rates were observed in blends containing 3M MEA/3M Am2 while the selection of the Am2 component had only a marginal impact on mass transfer rates. Overall, CO2 mass transfer in the fastest blends containing 3M MEA/3M Am2 was found to be only slightly lower than a 5M MEA solution at similar temperatures and CO2 loadings. In terms of equilibrium behaviour a slight decrease in the absorption capacity (moles CO2/mole amine) with increasing Am2 concentration in the blends with MEA was observed while cyclic capacity followed the opposite trend. Significant increases in cyclic capacity (26-111%) were observed in all blends when compared to MEA solutions at similar temperatures and total amine concentrations. In view of the reasonable compromise between CO2 absorption rate and capacity a blend containing 3M MEA and 3M AMP as blend components would represent a reasonable alternative in replacement of 5M MEA as a standalone solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ∼27% and ∼24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3) 63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistence of HIV-1 reservoirs within the Central Nervous System (CNS) remains a significant challenge to the efficacy of potent anti-HIV-1 drugs. The primary human Brain Microvascular Endothelial Cells (HBMVEC) constitutes the Blood Brain Barrier (BBB) which interferes with anti-HIV drug delivery into the CNS. The ATP binding cassette (ABC) transporters expressed on HBMVEC can efflux HIV-1 protease inhibitors (HPI), enabling the persistence of HIV-1 in CNS. Constitutive low level expression of several ABC-transporters, such as MDR1 (a.k.a. P-gp) and MRPs are documented in HBMVEC. Although it is recognized that inflammatory cytokines and exposure to xenobiotic drug substrates (e.g HPI) can augment the expression of these transporters, it is not known whether concomitant exposure to virus and anti-retroviral drugs can increase drug-efflux functions in HBMVEC. Our in vitro studies showed that exposure of HBMVEC to HIV-1 significantly up-regulates both MDR1 gene expression and protein levels; however, no significant increases in either MRP-1 or MRP-2 were observed. Furthermore, calcein-AM dye-efflux assays using HBMVEC showed that, compared to virus exposure alone, the MDR1 mediated drug-efflux function was significantly induced following concomitant exposure to both HIV-1 and saquinavir (SQV). This increase in MDR1 mediated drug-efflux was further substantiated via increased intracellular retention of radiolabeled [3H-] SQV. The crucial role of MDR1 in 3H-SQV efflux from HBMVEC was further confirmed by using both a MDR1 specific blocker (PSC-833) and MDR1 specific siRNAs. Therefore, MDR1 specific drug-efflux function increases in HBMVEC following co-exposure to HIV-1 and SQV which can reduce the penetration of HPIs into the infected brain reservoirs of HIV-1. A targeted suppression of MDR1 in the BBB may thus provide a novel strategy to suppress residual viral replication in the CNS, by augmenting the therapeutic efficacy of HAART drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing environmental awareness, maximizing biodegradability and minimizing ecotoxicity is the main driving force for new technological developments. Thus, can be developed new biodegradable lubricants for use in environmentally sensitive areas. The aim of this study was to obtain new bio-lubricants from passion fruit (Passiflora edulis Sims f. flavicarpa Degener) and moringa (Moringa oleifera Lamarck) epoxidized oils and develop a new additive package using experimental design for their use as a hydraulic fluid. In the first stage of this work was performed the optimization of the epoxidation process of the oils using fractional experimental design 24-1 , varying the temperature, reaction time, ratio of formic acid and hydrogen peroxide. In the second step was investigated the selectivity, thermodynamics and kinetics of the reaction for obtaining the two epoxides at 30, 50 and 70 °C. The result of the experimental design confirmed that the epoxidation of passion fruit oil requires 2 hours of reaction, 50 °C and a ratio H2O2/C=C/HCOOH (1:1:1). For moringa oil were required 2 hours reaction, 50 °C and a ratio of H2O2/C=C/HCOOH (1:1:1.5). The results of the final conversions were equal to 83.09% (± 0.3) for passion fruit oil epoxide and 91.02 (±0,4) for moringa oil epoxide. Following was made the 23 factorial design to evaluate which are the best concentrations of corrosion inhibitor and anti-wear (IC), antioxidant (BHA) and extreme pressure (EP) additives. The bio-lubricants obtained in this step were characterized according to DIN 51524 (Part 2 HLP) and DIN 51517 (Part 3 CLP) standards. The epoxidation process of the oils was able to improve the oxidative stability and reduce the total acid number, when compared to the in natura oils. Moreover, the epoxidized oils best solubilized additives, resulting in increased performance as a lubricant. In terms of physicochemical performance, the best lubricant fluid was the epoxidized moringa oil with additives (EMO-ADI), followed by the epoxidized passion fruit oil with additives (EPF-ADI) and, finally, the passion fruit in natura oil without additives (PFO). Lastly, was made the investigation of the tribological behavior under conditions of boundary lubrication for these lubricants. The tribological performance of the developed lubricants was analyzed on a HFRR equipment (High Frequency Reciprocating Rig) and the coefficient of friction, which occurs during the contact and the formation of the lubricating film, was measured. The wear was evaluated through optical microscopy and scanning electron microscopy (SEM). The results showed that the addition of extreme pressure (EP) and anti-wear and corrosion inhibitor (CI) additives significantly improve the tribological properties of the fluids. In all assays, was formed a lubricating film that is responsible for reducing the coefficient of metal-to-metal wear. It was observed that the addition of EP and IC additives in the in natura vegetable oils of passion fruit and moringa did not favor a significant reduction in wear. The bio-lubricants developed from passion fruit and moringa oils modified via epoxidation presented satisfactory tribological properties and shown to be potential lubricants for replacement of commercial mineral-based fluids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Envenomation caused by venomous animals, mainly scorpions and snakes, are a serious matter of public health. Tityus serrulatus is considered the most venomous scorpion in South America because of the high level of toxicity of its venom. It is responsible for causing serious accidents, mainly with kids. The species Bothrops jararaca is a serpent that has in its venom a complex mixture of enzyme, peptides and other molecules. The toxins of the venom of B. jararaca induce local and systemic inflammatory responses. The treatment chosen to serious cases of envenomation is the intravenous administration of the specific antivenom. However, the treatment is not always accessible to those residents in rural areas, so that they use medicinal plant extracts as the treatment. In this context, aqueous extracts, fractions and isolated compounds of Aspidosperma pyrifolium (pereiro) and Ipomoea asarifolia (salsa, salsa-brava), used in popular medicine, were studied in this research to evaluate the anti-inflammatory activity in the peritonitis models induced by carrageenan and peritonitis induced by the venom of the T. serrulatus (VTs), and in the local oedema model and inflammatory infiltrate induced by the venom of the B. jararaca, administrated intravenously. The results of the assays of cytotoxicity, using the MTT, showed that the aqueous extracts from the plant species presented low toxicity to the cells that came from the fibroblast of the mouse embryo (3T3).The chemical analysis of the extracts by High Performance Liquid Chromatography revealed the presence of the rutin flavonoid, in A. pyrifoliu, and rutin, clorogenic acid and caffeic acid, in I. asarifolia. Concerning the pharmacological evaluation, the results showed that the pre-treatment using aqueous extracts and fractions reduced the total leukocyte migration to the abdominal cavity in the peritonitis model caused by the carrageenan and in the peritonitis model induced by the T. serulatus venom. Yet, these groups presented anti-oedematous activity, in the local oedema model caused by the venom of the B. jararaca, and reduced the inflammatory infiltrate to the muscle. The serum (anti-arachnid and anti-bothropic) specific to each venom acted inhibiting the inflammatory action of the venoms and were used as control. The compounds identified in the extracts were also tested and, similar to the plant extracts, showed meaningful anti-inflammatory effects, in the tested doses. Thus, these results are indicating the potential anti-inflammatory activity of the plants studied. This is the first research that evaluated the possible biological effects of the A. pyrifolium and I. asarifolia, showing the biological potential that these species have.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory bowel diseases is composed by a set of chronic and inflammatory disorders, among them is ulcerative colitis (UC). UC treatment is based on anti-inflammatory administration; however, this group of drugs clearly leads to development of undesirable side effects, what stimulate the search for new therapies alternatives. The aim of this study was to evaluate the effect of hydroalcholic Turnera subulata extract on acetic acid-induced acute UC in rats. UC was induced by 1 mL injection of 4% acetic acid via rectal in Wistar mouse. 42 animals were distributed among 6 experimental groups: Control, UC, Sulfasalazine 500 mg/Kg/day (SSZ), T. subulata 50mg/Kg/day (TS 50), T. subulata 100mg/Kg/day (TS 100), T. subulata 200mg/Kg/day (TS 200). Throughout the experiment, body weight, food and water ingestion was daily evaluated. At the end of the experiment, the animals were euthanized and a colon fragment was observed by macroscopic analysis. Colon fragments were also collected for microscopic analysis and oxidative stress evaluation. The means from each group was compared by ANOVA test with a significance level of 5% (p<0.05) using GraphPad Prism Software. As results, we can clearly observe that SSZ group had the greater body weight decrease among the groups throughout the experiments, 14.78%, as well as, the lowest food intake, 6.23 g of food/day. The animals treated with T. subulata extracts showed no important body weight loss when compared to control. UC group showed the highest tissue damage macroscope score, 6.5, while TS 50 showed the lowest tissue damage score: 1. Microscope evaluation showed the presence of edema, haemorraghia and ulceration in all group of animals, except for Control. Nevertheless, TS 50 showed the lowest inflammatory damage among all groups. Oxidative stress analysis revealed that T. subulata treatment modulate catalase and superoxide dismutase activity, we also observed a decrease in protein and lipid peroxidation in response to extract administration. Taken together, these results shows that T. subulata extract exerts anti-inflammatory and anti-oxidant effects on experimental UC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory bowel diseases is composed by a set of chronic and inflammatory disorders, among them is ulcerative colitis (UC). UC treatment is based on anti-inflammatory administration; however, this group of drugs clearly leads to development of undesirable side effects, what stimulate the search for new therapies alternatives. The aim of this study was to evaluate the effect of hydroalcholic Turnera subulata extract on acetic acid-induced acute UC in rats. UC was induced by 1 mL injection of 4% acetic acid via rectal in Wistar mouse. 42 animals were distributed among 6 experimental groups: Control, UC, Sulfasalazine 500 mg/Kg/day (SSZ), T. subulata 50mg/Kg/day (TS 50), T. subulata 100mg/Kg/day (TS 100), T. subulata 200mg/Kg/day (TS 200). Throughout the experiment, body weight, food and water ingestion was daily evaluated. At the end of the experiment, the animals were euthanized and a colon fragment was observed by macroscopic analysis. Colon fragments were also collected for microscopic analysis and oxidative stress evaluation. The means from each group was compared by ANOVA test with a significance level of 5% (p<0.05) using GraphPad Prism Software. As results, we can clearly observe that SSZ group had the greater body weight decrease among the groups throughout the experiments, 14.78%, as well as, the lowest food intake, 6.23 g of food/day. The animals treated with T. subulata extracts showed no important body weight loss when compared to control. UC group showed the highest tissue damage macroscope score, 6.5, while TS 50 showed the lowest tissue damage score: 1. Microscope evaluation showed the presence of edema, haemorraghia and ulceration in all group of animals, except for Control. Nevertheless, TS 50 showed the lowest inflammatory damage among all groups. Oxidative stress analysis revealed that T. subulata treatment modulate catalase and superoxide dismutase activity, we also observed a decrease in protein and lipid peroxidation in response to extract administration. Taken together, these results shows that T. subulata extract exerts anti-inflammatory and anti-oxidant effects on experimental UC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arachidonic acid (AA) a precursor in the formation of eicosanoids which are lipid mediators with a number of functions in human physiology and pathology. The most of the eicosanoids act as proinflammatory mediators and contribute to the development and proliferation of tumors. In this thesis we evaluated two mediators: 15-deoxy-Δ12,14-PGJ2 (15d- PGJ2) and epoxieicosatrienoic acids (EETs) both act with an opposite activity of most eicosanoids, with an anti-inflammatory and and anti-tumoral action these two distinct mediators from AA pathway were used in this thesis in two different projects. First: 15d- PGJ2, was described that to have an antiproliferative activity and to induce apoptosis in several types of tumor cells however, the effect of 15d- PGJ2 in thyroid cancer cells was unknown in this sense, we tested in vitro cultured thyroid tumor cells, here in TPC1 cells, and treated with different concentrations of 15d- PGJ2 (0 to 20 uM) the treated cells showed a decrease in proliferation and an increase in apoptosis and a decrease in IL-6 release and relative expression. These key results together demonstrate that 15d- PGJ2 can be used as a new therapy for thyroid cancer. Second: The EETs are converted to their diols by soluble epoxy hydrolase (sEH) to maintain the stability of EETs and their anti-inflammatory activity, an inhibitor (TPPU) against was used to sEH in a periodontitis model induced with Aggregatibacter actinomycetemcomitans. The oral treatment in mice with TPPU and sEH Knockout animals showed bone loss reduction accompanied by a decrease in the osteoclastogenic molecules, like RANK, RANKL and OPG, demonstrating that pharmacological inhibition of sEH may have therapeutic value in periodontitis and inflammatory diseases that involve bone resorption.