967 resultados para Connecticut Institute of Water Resources
Resumo:
Uranium ion beams were produced from electron cyclotron resonance (ECR) ion sources by sputtering method this year at the Institute of Modern Physics. At first, we chose the Lanzhou ECR No. 3 ion source to implement the production experiment of U ion beams. Finally, 11 e mu A of U28+, 5 e mu A of U32+, and 1.5 e mu A of U35+ were obtained. A U26+ ion beam produced by the LECR2 ion source was accelerated successfully by the cyclotron. This means that the Heavy Ion Research Facility in Lanzhou (HIRFL) has accomplished the acceleration of the ion beam of the heaviest element according to the designed parameters. The Lanzhou ECR ion source No. 2 (LECR2), which was built in 1997, has served the HIRFL for eight years and needed to be upgraded to provide more intense high charge state ion beams for HIRFL cooling storage ring. We started the upgrading project of LECR2 last year, and the modified design just has been finished. (c) 2006 American Institute of Physics.
Resumo:
Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.
Resumo:
The molar heat capacity of the azeotropic mixture composed of water and benzene was measured by an adiabatic calorimeter in the temperature range from 80 to 320 K. The phase transitions took place in the temperature range from 265.409 to 275.165 K and 275.165 to 279.399 K. The phase transition temperatures were determined to be 272.945 and 278.339 K, which were corresponding to the solid-liquid phase transitions of water and benzene, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to standard temperature 298.15 K were derived from the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.
Resumo:
National Key Technology RD Program [2006BAD03A02]
Resumo:
National Natural Science Foundation of China [70673097]
Resumo:
In recent years, the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projections in the Upper Yangtze River, but it has not been evaluated at the macro scale. Taking Sichuan Province and Chongqing City as an example, this paper studies the relationship between socio-economic factors and sediment yield in the Upper Yangtze River based on section data in 1989 and 2007. The results show that sediment yield is significantly correlated with population density and cultivated area, in which the former appears to be more closely related to sediment yield. Moreover, in the relation of sediment yield vs. population density, a critical value of population density exists, below which the sediment yield increases with the increase of population density and over which the sediment yield increases with the decrease of population density. The phenomenon essentially reflects the influence of natural factors, such as topography, precipitation and soil property, and some human activities on sediment yield. The region with a higher population density than critical value is located in the east of the study area and is characterized by plains, hills and low mountains, whereas the opposite is located in the west and characterized by middle and high mountains. In the eastern region, more people live on the lands with a low slope where regional soil erosion is slight; therefore, sediment yield is negatively related with population density. In contrast, in the western region, the population tends to aggregate in the areas with abundant soil and water resources which usually lead to a higher intensity of natural erosion, and in turn, high-intensity agricultural practices in these areas may further strengthen local soil erosion. It is also found that population tends to move from the areas with bad environment and high sediment yield to the areas with more comfortable environment and less sediment yield. The natural factors have greater influence on sediment yield of western region than that of eastern region. Generally, the natural factors play a dominant role on sediment yield in the Upper Yangtze River.