965 resultados para Computer software - Accounting
Resumo:
One of the challenges for software engineering is collecting meaningful data from industrial projects. Software process improvement depends on measurement to provide baseline status and confirming evidence of the effect of process changes. Without data, any conclusions rely on intuition and guessing. The Team Software ProcessSM (TSPSM) provides a powerful framework for data collection and analysis, in addition to its primary goal as a basis for highly effective software development. In this paper, we describe the experiences of, and benefits realized by, a team using the TSP for the first time. By reviewing how this particular team collected and used data, we show features of the TSP that make it a powerful foundation for software process improvement.
Resumo:
In empirical studies of Evolutionary Algorithms, it is usually desirable to evaluate and compare algorithms using as many different parameter settings and test problems as possible, in border to have a clear and detailed picture of their performance. Unfortunately, the total number of experiments required may be very large, which often makes such research work computationally prohibitive. In this paper, the application of a statistical method called racing is proposed as a general-purpose tool to reduce the computational requirements of large-scale experimental studies in evolutionary algorithms. Experimental results are presented that show that racing typically requires only a small fraction of the cost of an exhaustive experimental study.
Resumo:
This paper presents a formal framework for modelling and analysing mobile systems. The framework comprises a collection of models of the dominant design paradigms which are readily extended to incorporate details of particular technologies, i.e., programming languages and their run-time support, and applications. The modelling language is Object-Z, an extension of the well-known Z specification language with explicit support for object-oriented concepts. Its support for object orientation makes Object-Z particularly suited to our task. The system structuring techniques offered by object-orientation are well suited to modelling mobile systems. In addition, inheritance and polymorphism allow us to exploit commonalities in mobile systems by defining more complex models in terms of simpler ones.
Resumo:
Since Z, being a state-based language, describes a system in terms of its state and potential state changes, it is natural to want to describe properties of a specified system also in terms of its state. One means of doing this is to use Linear Temporal Logic (LTL) in which properties about the state of a system over time can be captured. This, however, raises the question of whether these properties are preserved under refinement. Refinement is observation preserving and the state of a specified system is regarded as internal and, hence, non-observable. In this paper, we investigate this issue by addressing the following questions. Given that a Z specification A is refined by a Z specification C, and that P is a temporal logic property which holds for A, what temporal logic property Q can we deduce holds for C? Furthermore, under what circumstances does the property Q preserve the intended meaning of the property P? The paper answers these questions for LTL, but the approach could also be applied to other temporal logics over states such as CTL and the mgr-calculus.
Resumo:
In this paper, we compare a well-known semantic spacemodel, Latent Semantic Analysis (LSA) with another model, Hyperspace Analogue to Language (HAL) which is widely used in different area, especially in automatic query refinement. We conduct this comparative analysis to prove our hypothesis that with respect to ability of extracting the lexical information from a corpus of text, LSA is quite similar to HAL. We regard HAL and LSA as black boxes. Through a Pearsonrsquos correlation analysis to the outputs of these two black boxes, we conclude that LSA highly co-relates with HAL and thus there is a justification that LSA and HAL can potentially play a similar role in the area of facilitating automatic query refinement. This paper evaluates LSA in a new application area and contributes an effective way to compare different semantic space models.
Resumo:
We discuss how integrity consistency constraints between different UML models can be precisely defined at a language level. In doing so, we introduce a formal object-oriented metamodeling approach. In the approach, integrity consistency constraints between UML models are defined in terms of invariants of the UML model elements used to define the models at the language-level. Adopting a formal approach, constraints are formally defined using Object-Z. We demonstrate how integrity consistency constraints for UML models can be precisely defined at the language-level and once completed, the formal description of the consistency constraints will be a precise reference of checking consistency of UML models as well as for tool development.
Resumo:
Three important goals in describing software design patterns are: generality, precision, and understandability. To address these goals, this paper presents an integrated approach to specifying patterns using Object-Z and UML. To achieve the generality goal, we adopt a role-based metamodeling approach to define patterns. With this approach, each pattern is defined as a pattern role model. To achieve precision, we formalize role concepts using Object-Z (a role metamodel) and use these concepts to define patterns (pattern role models). To achieve understandability, we represent the role metamodel and pattern role models visually using UML. Our pattern role models provide a precise basis for pattern-based model transformations or refactoring approaches.
Resumo:
The texture segmentation techniques are diversified by the existence of several approaches. In this paper, we propose fuzzy features for the segmentation of texture image. For this purpose, a membership function is constructed to represent the effect of the neighboring pixels on the current pixel in a window. Using these membership function values, we find a feature by weighted average method for the current pixel. This is repeated for all pixels in the window treating each time one pixel as the current pixel. Using these fuzzy based features, we derive three descriptors such as maximum, entropy, and energy for each window. To segment the texture image, the modified mountain clustering that is unsupervised and fuzzy c-means clustering have been used. The performance of the proposed features is compared with that of fractal features.