881 resultados para Computed tomography (CT)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bone graft is generally considered fundamental in achieving solid fusion in scoliosis correction and pseudarthrosis following instrumentation may predispose to implant failure. In thoracoscopic anterior-instrumented scoliosis surgery, autologous rib or iliac crest graft has been utilised traditionally but both techniques increase operative duration and cause donor site morbidity. Allograft bone and bone morphogenetic protein (BMP) alternatives may improve fusion rates but this remains controversial. This study's objective was to compare two-year postoperative fusion rates in a series of patients who underwent thoracoscopic anterior instrumentation for thoracic scoliosis utilising various bone graft types.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insufficient availability of osteogenic cells limits bone regeneration through cell-based therapies. This study investigated the potential of amniotic fluid–derived stem (AFS) cells to synthesize mineralized extracellular matrix within porous medical-grade poly-e-caprolactone (mPCL) scaffolds. The AFS cells were initially differentiated in two-dimensional (2D) culture to determine appropriate osteogenic culture conditions and verify physiologic mineral production by the AFS cells. The AFS cells were then cultured on 3D mPCL scaffolds (6-mm diameter9-mm height) and analyzed for their ability to differentiate to osteoblastic cells in this environment. The amount and distribution of mineralized matrix production was quantified throughout the mPCL scaffold using nondestructive micro computed tomography (microCT) analysis and confirmed through biochemical assays. Sterile microCT scanning provided longitudinal analysis of long-term cultured mPCL constructs to determine the rate and distribution of mineral matrix within the scaffolds. The AFS cells deposited mineralized matrix throughout the mPCL scaffolds and remained viable after 15 weeks of 3D culture. The effect of predifferentiation of the AFS cells on the subsequent bone formation in vivo was determined in a rat subcutaneous model. Cells that were pre-differentiated for 28 days in vitro produced seven times more mineralized matrix when implanted subcutaneously in vivo. This study demonstrated the potential of AFS cells to produce 3D mineralized bioengineered constructs in vitro and in vivo and suggests that AFS cells may be an effective cell source for functional repair of large bone defects

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An iterative method for the fit optimisation of a pre-contoured fracture fixation plate for a given bone data set is presented. Both plate shape optimisation and plate fit quantification are conducted in a virtual environment utilising computer graphical methods and 3D bone and plate models. Two optimised shapes of the undersurface of an existing distal medial tibia plate were generated based on a dataset of 45 3D bone models reconstructed from computed tomography image data of Japanese tibiae. The existing plate shape achieved an anatomical fit on 13% of tibiae from the dataset. Modified plate 1 achieved an anatomical fit for 42% and modified plate 2 a fit for 67% of the bones. If either modified plate 1 or plate 2 is used, then the anatomical fit can be increased to 82% for the same dataset. Issues pertaining to any further improvement in plate fit/shape are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to evaluate the feasibility and potential of a hybrid scaffold system in large- and high-load-bearing osteochondral defects repair. The implants were made of medical-grade PCL (mPCL) for the bone compartment whereas fibrin glue was used for the cartilage part. Both matrices were seeded with allogenic bone marrow-derived mesenchymal cells (BMSC) and implanted in the defect (4 mm diameter×5 mm depth) on medial femoral condyle of adult New Zealand White rabbits. Empty scaffolds were used at the control side. Cell survival was tracked via fluorescent labeling. The regeneration process was evaluated by several techniques at 3 and 6 months post-implantation. Mature trabecular bone regularly formed in the mPCL scaffold at both 3 and 6 months post-operation. Micro-Computed Tomography showed progression of mineralization from the host–tissue interface towards the inner region of the grafts. At 3 months time point, the specimens showed good cartilage repair. In contrast, the majority of 6 months specimens revealed poor remodeling and fissured integration with host cartilage while other samples could maintain good cartilage appearance. In vivo viability of the transplanted cells was demonstrated for the duration of 5 weeks. The results demonstrated that mPCL scaffold is a potential matrix for osteochondral bone regeneration and that fibrin glue does not inherit the physical properties to allow for cartilage regeneration in a large and high-load-bearing defect site. Keywords: Osteochondral tissue engineering; Scaffold; Bone marrow-derived precursor cells; Fibrin glue

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The technologies employed for the preparation of conventional tissue engineering scaffolds restrict the materials choice and the extent to which the architecture can be designed. Here we show the versatility of stereolithography with respect to materials and freedom of design. Porous scaffolds are designed with computer software and built with either a poly(d,l-lactide)-based resin or a poly(d,l-lactide-co-ε-caprolactone)-based resin. Characterisation of the scaffolds by micro-computed tomography shows excellent reproduction of the designs. The mechanical properties are evaluated in compression, and show good agreement with finite element predictions. The mechanical properties of scaffolds can be controlled by the combination of material and scaffold pore architecture. The presented technology and materials enable an accurate preparation of tissue engineering scaffolds with a large freedom of design, and properties ranging from rigid and strong to highly flexible and elastic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesoporous bioactive glass (MBG) is a new class of biomaterials with a well-ordered nanochannel structure, whose in vitro bioactivity is far superior than that of non-mesoporous bioactive glass (BG); the material's in vivo osteogenic properties are, however, yet to be assessed. Porous silk scaffolds have been used for bone tissue engineering, but this material's osteoconductivity is far from optimal. The aims of this study were to incorporate MBG into silk scaffolds in order to improve their osteoconductivity and then to compare the effect of MBG and BG on the in vivo osteogenesis of silk scaffolds. MBG/silk and BG/silk scaffolds with a highly porous structure were prepared by a freeze-drying method. The mechanical strength, in vitro apatite mineralization, silicon ion release and pH stability of the composite scaffolds were assessed. The scaffolds were implanted into calvarial defects in SCID mice and the degree of in vivo osteogenesis was evaluated by microcomputed tomographyCT), hematoxylin and eosin (H&E) and immunohistochemistry (type I collagen) analyses. The results showed that MBG/silk scaffolds have better physiochemical properties (mechanical strength, in vitro apatite mineralization, Si ion release and pH stability) compared to BG/silk scaffolds. MBG and BG both improved the in vivo osteogenesis of silk scaffolds. μCT and H&E analyses showed that MBG/silk scaffolds induced a slightly higher rate of new bone formation in the defects than did BG/silk scaffolds and immunohistochemical analysis showed greater synthesis of type I collagen in MBG/silk scaffolds compared to BG/silk scaffolds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Australian e-Health Research Centre in collaboration with the Queensland University of Technology's Paediatric Spine Research Group is developing software for visualisation and manipulation of large three-dimensional (3D) medical image data sets. The software allows the extraction of anatomical data from individual patients for use in preoperative planning. State-of-the-art computer technology makes it possible to slice through the image dataset at any angle, or manipulate 3D representations of the data instantly. Although the software was initially developed to support planning for scoliosis surgery, it can be applied to any dataset whether obtained from computed tomography, magnetic resonance imaging or any other imaging modality.