964 resultados para Complexes de nickel(II)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A member of the Cation Diffusion Facilitator (CDF) family with high sequence similarity to DmeF (Divalent metal efflux) from Cupridavirus metallidurans was identified in Rhizobium leguminosarum bv. viciae UPM1137. The R. leguminosarum dmeF mutant strain was highly sensitive to Co2+ and moderately sensitive to Ni2+, but its tolerance to other metals such as Zn2+, Cu2+ or Mn2+ was unaffected. An open reading frame located upstream of R. leguminosarum dmeF, designated dmeR, encodes a protein homologous to the nickel and cobalt regulator RcnR from E.coli. Expression of the dmeRF operon was induced by nickel and cobalt ions in free-living cells, likely by alleviating DmeR-mediated transcriptional repression of the operon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteria require nickel transporters for the synthesis of Ni-containing metalloenzymes in natural, low nickel habitats. In this work we carry out functional and topological characterization of Rhizobium leguminosarum HupE, a nickel permease required for the provision of this element for [NiFe] hydrogenase synthesis. Expression studies in the Escherichia coli nikABCDE mutant strain HYD723 revealed that HupE is a medium-affinity permease (apparent Km 227 ! 21 nM; Vmax 49 ! 21 pmol Ni2+ min"1 mg"1 bacterial dry weight) that functions as an energy-independent diffusion facilitator for the uptake of Ni(II) ions. This Ni2+ transport is not inhibited by similar cations such as Mn2+, Zn2+, or Co2+, but is blocked by Cu2+. Analysis of site-directed HupE mutants allowed the identification of several residues (H36, D42, H43, F69, E90, H130, and E133) that are essential for HupE-mediated Ni uptake in E. coli cells. By using translational fusions to reporter genes we demonstrated the presence of five transmembrane domains with a periplasmic N-terminal domain and a C-terminal domain buried in the lipid bilayer. The periplasmic N-terminal domain contributes to stability and functionality of the protein

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alternative bacterial σN RNA polymerase holoenzyme binds promoters as a transcriptionally inactive complex that is activated by enhancer-binding proteins. Little is known about how sigma factors respond to their ligands or how the responses lead to transcription. To examine the liganded state of σN, the assembly of end-labeled Klebsiella pneumoniae σN into holoenzyme, closed promoter complexes, and initiated transcription complexes was analyzed by enzymatic protein footprinting. V8 protease-sensitive sites in free σN were identified in the acidic region II and bordering or within the minimal DNA binding domain. Interaction with core RNA polymerase prevented cleavage at noncontiguous sites in region II and at some DNA binding domain sites, probably resulting from conformational changes. Formation of closed complexes resulted in further protections within the DNA binding domain, suggesting close contact to promoter DNA. Interestingly, residue E36 becomes sensitive to proteolysis in initiated transcription complexes, indicating a conformational change in holoenzyme during initiation. Residue E36 is located adjacent to an element involved in nucleating strand separation and in inhibiting polymerase activity in the absence of activation. The sensitivity of E36 may reflect one or both of these functions. Changing patterns of protease sensitivity strongly indicate that σN can adjust conformation upon interaction with ligands, a property likely important in the dynamics of the protein during transcription initiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FKBP52 (HSP56, p59, HBI) is the 59-kDa immunosuppressant FK506-binding protein and has peptidyl prolyl isomerase as well as a chaperone-like activity in vitro. FKBP52 associates with the heat shock protein HSP90 and is included in the steroid hormone receptor complexes in vivo. FKBP52 possesses a well conserved phosphorylation site for casein kinase II (CK2) that was previously shown to be associated with HSP90. Here we examined whether FKBP52 is phosphorylated by CK2 both in vivo and in vitro. Recombinant rabbit FKBP52 was phosphorylated by purified CK2. We expressed and purified deletion mutants of FKBP52 to determine the site(s) phosphorylated by CK2. Thr-143 in the hinge I region was identified as the major phosphorylation site for CK2. A synthetic peptide corresponding to this region was phosphorylated by CK2, and the peptide competitively inhibited the phosphorylation of other substrates by CK2. The [32P]phosphate labeling of FKBP52-expressing cells revealed that the same site is also phosphorylated in vivo. FK506 binding to FKBP52 did not affect the phosphorylation by CK2 and, conversely, the FK506-binding activity of FKBP52 was not affected by the phosphorylation. Most importantly, CK2-phosphorylated FKBP52 did not bind to HSP90. These results indicate that CK2 phosphorylates FKBP52 both in vitro and in vivo and thus may regulate the protein composition of chaperone-containing complexes such as those of steroid receptors and certain protein kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several changes in cell morphology take place during the capping of surface receptors in Entamoeba histolytica. The amoebae develop the uroid, an appendage formed by membrane invaginations, which accumulates ligand–receptor complexes resulting from the capping process. Membrane shedding is particularly active in the uroid region and leads to the elimination of accumulated ligands. This appendage has been postulated to participate in parasitic defense mechanisms against the host immune response, because it eliminates complement and specific antibodies bound to the amoeba surface. The involvement of myosin II in the capping process of surface receptors has been suggested by experiments showing that drugs that affect myosin II heavy-chain phosphorylation prevent this activity. To understand the role of this mechanoenzyme in surface receptor capping, a myosin II dominant negative strain was constructed. This mutant is the first genetically engineered cytoskeleton-deficient strain of E. histolytica. It was obtained by overexpressing the light meromyosin domain, which is essential for myosin II filament formation. E. histolytica overexpressing light meromyosin domain displayed a myosin II null phenotype characterized by abnormal movement, failure to form the uroid, and failure to undergo the capping process after treatment with concanavalin A. In addition, the amoebic cytotoxic capacities of the transfectants on human colon cells was dramatically reduced, indicating a role for cytoskeleton in parasite pathogenicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the relationship between major histocompatibility complex (MHC) class II compartments, secretory granules, and secretory lysosomes, we analyzed the localization and fate of MHC class II molecules in mast cells. In bone marrow-derived mast cells, the bulk of MHC class II molecules is contained in two distinct compartments, with features of both lysosomal compartments and secretory granules defined by their protein content and their accessibility to endocytic tracers. Type I granules display internal membrane vesicles and are accessed by exogenous molecules after a time lag of 20 min; type II granules are reached by the endocytic tracer later and possess a serotonin-rich electron-dense core surrounded by a multivesicular domain. In these type I and type II granules, MHC class II molecules, mannose-6-phosphate receptors and lysosomal membrane proteins (lamp1 and lamp2) localize to small intralumenal vesicles. These 60–80-nm vesicles are released along with inflammatory mediators during mast cell degranulation triggered by IgE-antigen complexes. These observations emphasize the intimate connection between the endocytic and secretory pathways in cells of the hematopoietic lineage which allows regulated secretion of the contents of secretory lysosomes, including membrane proteins associated with small vesicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even though light is the driving force in photosynthesis, it also can be harmful to plants. The water-splitting photosystem II is the main target for this light stress, leading to inactivation of photosynthetic electron transport and photooxidative damage to its reaction center. The plant survives through an intricate repair mechanism involving proteolytic degradation and replacement of the photodamaged reaction center D1 protein. Based on experiments with isolated chloroplast thylakoid membranes and photosystem II core complexes, we report several aspects concerning the rapid turnover of the D1 protein. (i) The primary cleavage step is a GTP-dependent process, leading to accumulation of a 23-kDa N-terminal fragment. (ii) Proteolysis of the D1 protein is inhibited below basal levels by nonhydrolyzable GTP analogues and apyrase treatment, indicating the existence of endogenous GTP tightly bound to the thylakoid membrane. This possibility was corroborated by binding studies. (iii) The proteolysis of the 23-kDa primary degradation fragment (but not of the D1 protein) is an ATP- and zinc-dependent process. (iv) D1 protein degradation is a multienzyme event involving a strategic (primary) protease and a cleaning-up (secondary) protease. (v) The chloroplast FtsH protease is likely to be involved in the secondary degradation steps. Apart from its significance for understanding the repair of photoinhibition, the discovery of tightly bound GTP should have general implications for other regulatory reactions and signal transduction pathways associated with the photosynthetic membrane.