990 resultados para Comment of event
Resumo:
Elemental C and N percent composition and natural abundance of stable C and N isotopes of plankton species and/or size-fractions collected in several cruises on the N Atlantic Ocean from Greenland to Norway and around Iceland. Determinations included key copepod and krill species. Lipid extraction was performed in some samples to determine carbón isotope depletion factors.
Resumo:
The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr.
Resumo:
Die erneute moorkundlich-pollenanalytische Bearbeitung Nordfrieslands galt u.a. der Klärung folgender Fragen: 1. Sind die in größerer Entfernung von der Küste gewonnenen Erfahrungen über den Verlauf der Waldgeschichte der Nacheiszeit ohne weiteres auf die Marschen zu Übertragen? 2. Welche Einflüsse der Meeresüberflutungen auf die Entwicklung der Moore und ihrer Vegetation lassen sich feststellen ? 3. Wie ist der zeitliche Ablauf der postglazialen Meeresspiegelschwankungen in Nordfriesland, und ist es möglich, Fehldatierungen auszuschließen, welche durch Abtragung, Umlagerung oder Durchmischung der in das Marschprofil eingeschlossenen pollenführenden Moorschichten bedingt sind?
Resumo:
Canonical correspondence analysis indicates that the distribution of Neogene benthic foraminiferal faunas (>63 µm) in seven DSDP and ODP sites (500-4500 m water depth) east of New Zealand (38-51°S, 170°E-170°W) is most strongly influenced by depth (water mass stratification), and secondly by age (palaeoceanographic changes influencing faunal composition and biotic evolution). Stratigraphic faunal changes are interpretted in terms of the pulsed sequential development of southern, and later northern, polar glaciation and consequent cooling of bottom waters, increased vertical and lateral stratification of ocean water masses, and increased overall and seasonal surface water productivity. Oligocene initiation of the Antarctic Circumpolar Current and Deep Western Boundary Current (DWBC), flowing northwards past New Zealand, resulted in extensive hiatuses throughout the Southwest Pacific, some extending through into the Miocene. Planktic foraminiferal fragmentation index values indicate that carbonate dissolution was significant at abyssal depths throughout most of the Neogene, peaking at upper abyssal depths in the late Miocene (11-7 Ma), with the lysocline progressively deepened thereafter. Miocene abyssal faunas are dominated by Globocassidulina subglobosa and Oridorsalis umbonatus, with increasing Epistominella exigua after 16 Ma at upper abyssal depths. Peak abundances of Epistominella umbonifera indicate increased input of cold Southern Component Water to the DWBC at 7-6 Ma. Faunal association changes imply establishment of the modern Oxygen Minimum Zone (upper Circumpolar Deep Water) in the latest Miocene. Significant latitudinal differences between the benthic foraminiferal faunas at lower bathyal depths indicate the existence of an oceanic front along the Chatham Rise (location of present Subtropical Front), since the early late Miocene at least, with more pulsed productivity (higher E. exigua) along the south side. Modern Antarctic Intermediate Water faunal associations were established north of the Chatham Rise at 10-9 Ma, and south of it at 3-1.5 Ma. Middle-upper bathyal faunas on the Campbell Plateau are dominated by reticulate bolivinids during the early and middle Miocene, indicative of sustained productivity above relatively sluggish, suboxic bottom waters. Faunal changes and hiatuses indicate increased current vigour over the Campbell Plateau from the latest Miocene on. Surface water productivity (food supply) appears to have increased in three steps (at times of enhanced global cooling) marked by substantially increased relative abundance of: (1) Abditodentrix pseudothalmanni, Alabaminella weddellensis, Cassidulina norvangi (16-15 Ma, increased pulsed productivity); (2) Bulimina marginata f. aculeata, Nonionella auris, Trifarina angulosa, Uvigerina peregrina (3-1.5 Ma, increased overall productivity); and (3) Cassidulina carinata (1-0.5 Ma, increased overall productivity). Three intervals of deep-sea benthic foraminiferal taxonomic turnover are recognised (16-15, 11.5-10, 2-0.5 Ma) corresponding to intervals of enhanced global cooling and possible productivity changes. The late Pliocene-middle Pleistocene extinction, associated with increasing Northern Hemisphere glaciation, culminating in the middle Pleistocene climatic transition, was more significant in the study area than the earlier Neogene turnovers.