999 resultados para Color-flow
Resumo:
This thesis is focused on process intensification. Several significant problems and applications of this theme are covered. Process intensification is nowadays one of the most popular trends in chemical engineering and attempts have been made to develop a general, systematic methodology for intensification. This seems, however, to be very difficult, because intensified processes are often based on creativity and novel ideas. Monolith reactors and microreactors are successful examples of process intensification. They are usually multichannel devices in which a proper feed technique is important for creating even fluid distribution into the channels. Two different feed techniques were tested for monoliths. In the first technique a shower method was implemented by means of perforated plates. The second technique was a dispersion method using static mixers. Both techniques offered stable operation and uniform fluid distribution. The dispersion method enabled a wider operational range in terms of liquid superficial velocity. Using dispersion method, a volumetric gas-liquid mass transfer coefficient of 2 s-1 was reached. Flow patterns play a significant role in terms of the mixing performance of micromixers. Although the geometry of a T-mixer is simple, channel configurations and dimensions had a clear effect on mixing efficiency. The flow in the microchannel was laminar, but the formation of vortices promoted mixing in micro T-mixers. The generation of vortices was dependent on the channel dimensions, configurations and flow rate. Microreactors offer a high ratio of surface area to volume. Surface forces and interactions between fluids and surfaces are, therefore, often dominant factors. In certain cases, the interactions can be effectively utilised. Different wetting properties of solid materials (PTFE and stainless steel) were applied in the separation of immiscible liquid phases. A micro-scale plate coalescer with hydrophilic and hydrophobic surfaces was used for the continuous separation of organic and aqueous phases. Complete phase separation occurred in less than 20 seconds, whereas the separation time by settling exceeded 30 min. Fluid flows can be also intensified in suitable conditions. By adding certain additives into turbulent fluid flow, it was possible to reduce friction (drag) by 40 %. Drag reduction decreases frictional pressure drop in pipelines which leads to remarkable energy savings and decreases the size or number of pumping facilities required, e.g., in oil transport pipes. Process intensification enables operation often under more optimal conditions. The consequent cost savings from reduced use of raw materials and reduced waste lead to greater economic benefits in processing.
Resumo:
There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.
Resumo:
Mi trabajo versa sobre la obra de O. Messiaen "Des Canyons aux etoiles" (De los cañones a las estrellas), y en particular de uno de los movimientos de la obra: "Appel Interestellaire" -N.VI- (Llamada Interestelar) -para trompa sola-. Se estructura en dos partes. La primera se centra en su contexto histórico -como, cuando y para quien fue compuesta-; análisis formal, armónico, melódico, rítmico; y aspectos estéticos. La segunda parte está vinculada con la interpretación de la obra. Se realiza un análisis para la interpretación -técnica de la trompa, efectos sonoros, timbres-; se hace una comparación entre la interpretación de 2 diferentes trompistas, y por último, aporto mi propuesta de interpretación. El trabajo se cierra con una conclusión, bibliografía, y un extracto con anexos (esquema, partitura y datos o imágenes de interés).
Resumo:
Organic compounds responsible for the color of wastewaters are usually refractory to biological digestion. In this paper the photo-assisted electrolysis process is used for color removal from three of the most colored wastewaters, which are daily generated in large amounts: the E1 bleach Kraft mill effluent, a textile reactive dye effluent and a landfill leachate. Electrolysis was carried out at 26,5 mA cm-2 in a flow reactor in which the anode surface was illuminated by a 400 W high pressure Hg bulb. In all experiments 70-75% of color reduction was observed which was also followed by a net organic load oxidation.
Resumo:
Knowledge flow from the customers is an important resource for a company and therefore it should engage its customers in knowledge co-creation. Through providing a virtual customer environment (VCE) as knowledge creation and sharing platform a company can obtain this type of knowledge, which is important for strategic purposes. In the VCE the members of the virtual customer community (VCC) create and share knowledge individually and collectively in diverse roles, utilizing many interaction facilities. Creating a functional VCE is not either easy or quick task and a company needs to analyze various issues carefully. Providing such a VCE in which customers want to share their experiences and insights is however worth of considering, since it brings many benefits for the company. In this research the main benefit is stated as the supportative role of the VCE in the better management of the knowledge flow from the customers.
Resumo:
As a result of the growing interest in studying employee well-being as a complex process that portrays high levels of within-individual variability and evolves over time, this present study considers the experience of flow in the workplace from a nonlinear dynamical systems approach. Our goal is to offer new ways to move the study of employee well-being beyond linear approaches. With nonlinear dynamical systems theory as the backdrop, we conducted a longitudinal study using the experience sampling method and qualitative semi-structured interviews for data collection; 6981 registers of data were collected from a sample of 60 employees. The obtained time series were analyzed using various techniques derived from the nonlinear dynamical systems theory (i.e., recurrence analysis and surrogate data) and multiple correspondence analyses. The results revealed the following: 1) flow in the workplace presents a high degree of within-individual variability; this variability is characterized as chaotic for most of the cases (75%); 2) high levels of flow are associated with chaos; and 3) different dimensions of the flow experience (e.g., merging of action and awareness) as well as individual (e.g., age) and job characteristics (e.g., job tenure) are associated with the emergence of different dynamic patterns (chaotic, linear and random).
Resumo:
The spectrophotometric determination of Cd(II) using a flow injection system provided with a solid-phase reactor for cadmium preconcentration and on-line reagent preparation, is described. It is based on the formation of a dithizone-Cd complex in basic medium. The calibration curve is linear between 6 and 300 µg L-1 Cd(II), with a detection limit of 5.4 µg L-1, an RSD of 3.7% (10 replicates in duplicate) and a sample frequency of 11.4 h-1. The proposed method was satisfactorily applied to the determination of Cd(II) in surface, well and drinking waters.
Resumo:
A flow system coupled to a tungsten coil atomizer in an atomic absorption spectrometer (TCA-AAS) was developed for As(III) determination in waters, by extraction with sodium diethyldithiocarbamate (NaDDTC) as complexing agent, and by sorption of the As(III)-DDTC complex in a micro-column filled with 5 mg C18 reversed phase (10 µL dry sorbent), followed by elution with ethanol. A complete pre-concentration/elution cycle took 208 s, with 30 s sample load time (1.7 mL) and 4 s elution time (71 µL). The interface and software for the synchronous control of two peristaltic pumps (RUN/ STOP), an autosampler arm, seven solenoid valves, one injection valve, the electrothermal atomizer and the spectrometer Read function were constructed. The system was characterized and validated by analytical recovery studies performed both in synthetic solutions and in natural waters. Using a 30 s pre-concentration period, the working curve was linear between 0.25 and 6.0 µg L-1 (r = 0.9976), the retention efficiency was 94±1% (6.0 µg L-1), and the pre-concentration coefficient was 28.9. The characteristic mass was 58 pg, the mean repeatability (expressed as the variation coefficient) was 3.4% (n=5), the detection limit was 0.058 µg L-1 (4.1 pg in 71 µL of eluate injected into the coil), and the mean analytical recovery in natural waters was 92.6 ± 9.5 % (n=15). The procedure is simple, economic, less prone to sample loss and contamination and the useful lifetime of the micro-column was between 200-300 pre-concentration cycles.
Resumo:
The behaviour of Nafion® polymeric membranes containing acid-base dyes, bromothymol blue (BB) and methyl violet (MV), were studied aiming at constructing an optical sensor for pH measurement. BB revealed to be inadequate for developing sensing phases due to the electrostatic repulsion between negative groups of their molecules and the negative charge of the sulfonate group of the Nafion®, which causes leaching of the dye from the membrane. On the other hand, MV showed to be suitable due to the presence of positive groups in its structure. The membrane prepared from a methanolic solution whose Nafion®/dye molar ratio was 20 presented the best analytical properties, changing its color from green to violet in the pH range from 0.6 to 3.0. The membrane can be prepared with good reproducibility, presenting durability of ca. 6 months and response time of 22 s, making possible its use for pH determination in flow analysis systems.
Resumo:
Biofilm communities are exposed to long periods of desiccation in temporary streams. We investigated how water flow intermittency affected the bacterial community structure colonizing three different streambed compartments in a Mediterranean stream. Massive parallel sequencing revealed different bacterial communities in biofilms from sand sediments and cobbles. Bacterial communities were similar (62% of shared operational taxonomic units) in the epipsammic and hyporheic biofilms, and more diverse than those in the epilithic biofilms. The non-flow phase caused a decrease of bacterial diversity in the biofilms, when communities included only bacterial taxa assumed to be adapted to water stress. The most sensitive bacterial communities to flow intermittency were in the epilithic, where the exposure to physical stress was the highest. In sand sediments a wide group of bacterial taxa was tolerant to desiccation. During non-flow the proliferation of opportunistic taxa in the superficial compartments evidenced the biological link with the terrestrial environment. Bacterial communities better tolerate rewetting than desiccation, since a major number of taxa tolerant to rewetting occurred in all biofilms. Overall, bacterial communities in sandy compartments showed higher resistance to flow intermittency than those in epilithic biofilms
Resumo:
This paper presents the study of the oxidation of three textile dyes (Remazol black B, Remazol Brilliant Orange 3R and Remazol Golden Yellow RNL) using electrochemical and photoelectrochemical methods. In both methods, electrolysis experiments were performed at a current density of 50 mA cm-2 in an aqueous solution of each dye (30 mg L-1), using a photoelectrochemical flow-cell. For all the dyes studied, the photoelectrochemical method was demonstrated to be more efficient than the electrochemical one. Photoelectrochemical oxidation resulted in complete decoloration after 90 min of electrolysis and total organic carbon (TOC) removal reached up to 36%. It was observed that the dyes presenting chromophores at higher wavelengths are removed the quickest, which indicates that photosensitised (photoassisted) oxidation occurs. The level of color was reduced to levels below the standards presented in the literature, which indicates the viability of the photoelectrochemical process as part of the treatment of textile effluents.
Resumo:
The modern stopped-flow reaction analyzer has shown high efficiency and flexibility, which provides outstanding sample economy with a dead-time of less than 1 ms. However the cost of the equipment imposes a serious restriction to many Brazilian scientists and teachers. In this work we describe the construction of a low-cost stopped-flow system coupled to a UV-Vis spectrophotometer. The performance of the system was checked by monitoring the kinetics of two reactions: the fading of phenolphthalein in aqueous alkaline solution and the chlorophyll a demetallation in acid medium. The apparatus showed reasonable efficiency with a dead-time of 0.3 to 0.5 s. The very good results obtained in these two illustrative processes show that the system is satisfactory for determining rate constants with mean reaction times ranging from seconds to minutes.
Resumo:
Rivers are among the most diverse and threatened ecosystems on Earth, as they are impacted by increasing human pressures. Because rivers provide essential goods and services, conservation of these ecosystems is a requisite for sustainable development. Therefore, we must seek ways to conserve healthy rivers and to restore degraded ones
Resumo:
Considering the attraction of the students' attention by the changes in the colors of vegetable crude extracts caused by the variation of the pH of the medium, the use of these different colors in order to demonstrate principles of spectrophotometric acid-base titrations using the crude extracts as indicators is proposed. The experimental setup consisted of a simple spectrophotometer, a homemade flow cell and a pump to propel the fluids along the system. Students should be stimulated to choose the best wavelength to monitor the changes in color during the titration. Since the pH of the equivalence point depends on the system titrated, the wavelength must be properly chosen to follow these changes, demonstrating the importance of the correct choice of the indicator. When compared with the potentiometric results, errors as low as 2% could be found using Rhododendron simsii (azalea) or Tibouchina granulosa (Glory tree, quaresmeira) as sources of the crude extracts.
Resumo:
A systematic averaging procedure has been derived in order to obtain an integral form of conservation equations for dispersed multiphase flow, especially applicable to fluidized beds. A similar averaging method is applied further to formulate macroscopic integral equations, which can be used in one-dimensional and macroscopic multi dimensional models. Circulating fluid bed hydrodynamics has been studied experimentally and both macroscopic and microscopic flow profiles have been measured in a cold model. As an application of the theory, the one dimensional model has been used to study mass and momentum conservation of gas and solid in a circulating fluid bed. Axial solid mixing has also been modelled by the one dimensional model and mixing parameters have been evaluated.