899 resultados para Cold Formed Steel Structures, Hollow Flange Channel, Lateral Distortional Buckling, Innovation
Resumo:
In this paper, we report a systematic investigation of the dependence of both temperature and strain sensitivities on the jiber Bragg grating (FBG) type, including the wellknown Type I, Type IIA, and a new type which we have designated Type 1.4, using both hydrogen-Ji-ee and hydrogenated B/Ge codoped jibers. We have identijed distinct sensitivity characteristics for each grating type, and we have utilised them to implement a novel dual-grating, duul-parameter sensor device. Three dual-grating sensing schemes with different combinations of gruting types have been constructed and compared. The Type IA-Type IIA combination exhibits the best pe$ormance and is superior to that of previously reported gruting-based structures. The characteristics of the measurement errors in such dualgrating sensor systems is also presented in detail.
Resumo:
The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 μm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008 nm over 290 m of 19 cell HC-PBGF is reported. © 2013 Optical Society of America.
Resumo:
Fps1p is a glycerol efflux channel from Saccharomyces cerevisiae. In this atypical major intrinsic protein neither of the signature NPA motifs of the family, which are part of the pore, is preserved. To understand the functional consequences of this feature, we analyzed the pseudo-NPA motifs of Fps1p by site-directed mutagenesis and assayed the resultant mutant proteins in vivo. In addition, we took advantage of the fact that the closest bacterial homolog of Fps1p, Escherichia coli GlpF, can be functionally expressed in yeast, thus enabling the analysis in yeast cells of mutations that make this typical major intrinsic protein more similar to Fps1p. We observed that mutations made in Fps1p to "restore" the signature NPA motifs did not substantially affect channel function. In contrast, when GlpF was mutated to resemble Fps1p, all mutants had reduced activity compared with wild type. We rationalized these data by constructing models of one GlpF mutant and of the transmembrane core of Fps1p. Our model predicts that the pore of Fps1p is more flexible than that of GlpF. We discuss the fact that this may accommodate the divergent NPA motifs of Fps1p and that the different pore structures of Fps1p and GlpF may reflect the physiological roles of the two glycerol facilitators.
Resumo:
This paper compares the crack growth resistance of an experimental spray-formed extrusion with that of a commercial aluminium alloy, the two alloys having similar compositions but markedly different grain structures. Tensile and fracture behaviour is similar in both materials and is influenced by inclusion content. The two materials differ in their crack growth resistance, which is shown to be dependent upon grain size and shape. Environmentally-induced crack growth is favoured by aligned grain boundaries and small grain size.
Resumo:
Threshold stress intensity values, ranging from ∼6 to 16 MN m −3/2 can be obtained in powder-formed Nimonic AP1 by changing the microstructure. The threshold and low crack growth rate behaviour at room temperature of a number of widely differing API microstructures, with both ‘necklace’ and fully recrystallized grain structures of various sizes and uniform and bimodal γ′-distributions, have been investigated. The results indicate that grain size is an important microstructural parameter which can control threshold behaviour, with the value of threshold stress intensity increasing with increasing grain size, but that the γ′-distribution is also important. In this Ni-base alloy, as in many others, near threshold fatigue crack growth occurs in a crystallographic manner along {111} planes. This is due to the development of a dislocation structure involving persistent slip bands on {111} planes in the plastic zone, caused by the presence of ordered shearable precipitates in the microstructure. However, as the stress intensity range is increased, a striated growth mode takes over. The results presented show that this transition from faceted to striated growth is associated with a sudden increase in crack propagation rate and occurs when the size of the reverse plastic zone at the crack tip becomes equal to the grain size, independent of any other microstructural variables.
Resumo:
We report on a systematic investigation of the dependence of both temperature and strain sensitivities on the fiber Bragg grating type, including the well-known Type I, Type IIA, and a new type that we have designated Type IA, using both hydrogen-free and hydrogenated B/Ge codoped fibres. We have identified distinct sensitivity characteristics for each grating type, and we have used them to implement a novel dual-grating, dual-parameter sensor device. Three dual-grating sensing schemes with different combinations of grating type have been constructed and compared, and that of a Type IA-Type IIA combination exhibits the best performance, which is also superior to that of previously reported grating-based structures. The characteristics of the measurement errors in such dual-grating sensor systems is also presented in detail. © 2004 Optical Society of America.
Resumo:
Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.
Resumo:
A porous composite formed of hollow graphene spheres with opens in them and amorphous carbon containing nitrogen and oxygenated groups has been fabricated by annealing the mixture of nanodiamond and polyacrylonitrile (PAN). Electrochemical tests on the electrode made of this material show that it may be a promising electrode material for supercapacitors. The relatively high capacitance is mainly attributed to the small inner electrical resistance, the huge specific surface area and the remaining nitrogen and oxygenated groups from the PAN.
Resumo:
In-fiber microchannels were fabricated directly in standard single mode fiber using the femtosecond laser inscribe and etch technique. This method of creating in-fiber microchannels offers great versatility, since it allows complex three-dimensional structures to be inscribed and then preferentially etched with hydrofluoric acid. In addition, inscription does not require a photosensitive fiber; the modification is induced through nonlinear processes triggered by an ultrashort laser pulse. Four in-fiber microchannel designs were experimentally investigated using this technique - microhole, microslot channel along the core, microslot channel perpendicular to the core and helical channel around the core. Each device design was evaluated through monitoring the optical spectral change while inserting a range of index matching oils into each microchannel; an R.I. sensitivity up to 1.55 dB/RIU was achieved in these initial tests. Furthermore, an all femtosecond laser inscribed Fabry-Pérot-based refractometer with an R.I. sensitivity of 2.75 nm/RIU was also demonstrated. The Fabry-Pérot refractometer was formed by positioning a microchannel between two femtosecond laser inscribed point-by-point fiber Bragg gratings.
Resumo:
This dissertation reports experimental studies of nonlinear optical effects manifested by electromagnetically induced transparency (EIT) in cold Rb atoms. The cold Rb atoms are confined in a magneto-optic trap (MOT) obtained with the standard laser cooling and trapping technique. Because of the near zero Doppler shift and a high phase density, the cold Rb sample is well suited for studies of atomic coherence and interference and related applications, and the experiments can be compared quantitatively with theoretical calculations. It is shown that with EIT induced in the multi-level Rb system by laser fields, the linear absorption is suppressed and the nonlinear susceptibility is enhanced, which enables studies of nonlinear optics in the cold atoms with slow photons and at low light intensities. Three independent experiments are described and the experimental results are presented. First, an experimental method that can produce simultaneously co-propagating slow and fast light pulses is discussed and the experimental demonstration is reported. Second, it is shown that in a three-level Rb system coupled by multi-color laser fields, the multi-channel two-photon Raman transitions can be manipulated by the relative phase and frequency of a control laser field. Third, a scheme for all-optical switching near single photon levels is developed. The scheme is based on the phase-dependent multi-photon interference in a coherently coupled four-level system. The phase dependent multi-photon interference is observed and switching of a single light pulse by a control pulse containing ∼20 photons is demonstrated. These experimental studies reveal new phenomena manifested by quantum coherence and interference in cold atoms, contribute to the advancement of fundamental quantum optics and nonlinear optics at ultra-low light intensities, and may lead to the development of new techniques to control quantum states of atoms and photons, which will be useful for applications in quantum measurements and quantum photonic devices.
Resumo:
The aim of this research was to demonstrate a high current and stable field emission (FE) source based on carbon nanotubes (CNTs) and electron multiplier microchannel plate (MCP) and design efficient field emitters. In recent years various CNT based FE devices have been demonstrated including field emission displays, x-ray source and many more. However to use CNTs as source in high powered microwave (HPM) devices higher and stable current in the range of few milli-amperes to amperes is required. To achieve such high current we developed a novel technique of introducing a MCP between CNT cathode and anode. MCP is an array of electron multipliers; it operates by avalanche multiplication of secondary electrons, which are generated when electrons strike channel walls of MCP. FE current from CNTs is enhanced due to avalanche multiplication of secondary electrons and in addition MCP also protects CNTs from irreversible damage during vacuum arcing. Conventional MCP is not suitable for this purpose due to the lower secondary emission properties of their materials. To achieve higher and stable currents we have designed and fabricated a unique ceramic MCP consisting of high SEY materials. The MCP was fabricated utilizing optimum design parameters, which include channel dimensions and material properties obtained from charged particle optics (CPO) simulation. Child Langmuir law, which gives the optimum current density from an electron source, was taken into account during the system design and experiments. Each MCP channel consisted of MgO coated CNTs which was chosen from various material systems due to its very high SEY. With MCP inserted between CNT cathode and anode stable and higher emission current was achieved. It was ∼25 times higher than without MCP. A brighter emission image was also evidenced due to enhanced emission current. The obtained results are a significant technological advance and this research holds promise for electron source in new generation lightweight, efficient and compact microwave devices for telecommunications in satellites or space applications. As part of this work novel emitters consisting of multistage geometry with improved FE properties were was also developed.
Resumo:
Based on theoretical considerations an explanation for the temperature dependence of the thermal expansion and the bulk modulus is proposed. A new equation state is also derived. Additionally a physical explanation for the latent heat of fusion is presented. These theoretical predictions are tested against experiments on highly symmetrical monatomic structures. ^ The volume is not an independent variable and must be broken down into its fundamental components when the relationships to the pressure and temperature are defined. Using zero pressure and temperature reference frame, the initial parameters, volume at zero pressure and temperature[V°], bulk modulus at zero temperature [K°] and volume coefficient of thermal expansion at zero pressure[α°] are defined. ^ The new derived EoS is tested against the experiments on perovskite and epsilon iron. The Root-mean-square-deviations (RMSD) of the residuals of the molar volume, pressure, and temperature are in the range of the uncertainty of the experiments. ^ Separating the experiments into 200 K ranges, the new EoS was compared to the most widely used finite strain, interatomic potential, and empirical isothermal EoSs such as the Burch-Murnaghan, the Vinet, and the Roy-Roy respectively. Correlation coefficients, RMSD's of the residuals, and Akaike Information Criteria were used for evaluating the fitting. Based on these fitting parameters, the new p-V-T EoS is superior in every temperature range relative to the investigated conventional isothermal EoS. ^ The new EoS for epsilon iron reproduces the preliminary-reference earth-model (PREM) densities at 6100-7400 K indicating that the presence of light elements might not be necessary to explain the Earth's inner core densities. ^ It is suggested that the latent heat of fusion supplies the energy required for overcoming on the viscous drag resistance of the atoms. The calculated energies for melts formed from highly symmetrical packing arrangements correlate very well with experimentally determined latent heat values. ^ The optical investigation of carhonado-diamond is also part of the dissertation. The collected first complete infrared FTIR absorption spectra for carhonado-diamond confirm the interstellar origin for the most enigmatic diamonds known as carbonado. ^
Resumo:
Since the Morris worm was released in 1988, Internet worms continue to be one of top security threats. For example, the Conficker worm infected 9 to 15 million machines in early 2009 and shut down the service of some critical government and medical networks. Moreover, it constructed a massive peer-to-peer (P2P) botnet. Botnets are zombie networks controlled by attackers setting out coordinated attacks. In recent years, botnets have become the number one threat to the Internet. The objective of this research is to characterize spatial-temporal infection structures of Internet worms, and apply the observations to study P2P-based botnets formed by worm infection. First, we infer temporal characteristics of the Internet worm infection structure, i.e., the host infection time and the worm infection sequence, and thus pinpoint patient zero or initially infected hosts. Specifically, we apply statistical estimation techniques on Darknet observations. We show analytically and empirically that our proposed estimators can significantly improve the inference accuracy. Second, we reveal two key spatial characteristics of the Internet worm infection structure, i.e., the number of children and the generation of the underlying tree topology formed by worm infection. Specifically, we apply probabilistic modeling methods and a sequential growth model. We show analytically and empirically that the number of children has asymptotically a geometric distribution with parameter 0.5, and the generation follows closely a Poisson distribution. Finally, we evaluate bot detection strategies and effects of user defenses in P2P-based botnets formed by worm infection. Specifically, we apply the observations of the number of children and demonstrate analytically and empirically that targeted detection that focuses on the nodes with the largest number of children is an efficient way to expose bots. However, we also point out that future botnets may self-stop scanning to weaken targeted detection, without greatly slowing down the speed of worm infection. We then extend the worm spatial infection structure and show empirically that user defenses, e.g. , patching or cleaning, can significantly mitigate the robustness and the effectiveness of P2P-based botnets. To counterattack, we evaluate a simple measure by future botnets that enhances topology robustness through worm re-infection.
Resumo:
Most of the moveable bridges use open grid steel decks, because these are factory assembled, light-weight, and easy to install. Open grid steel decks, however, are not as skid resistant as solid decks. Costly maintenance, high noise levels, poor riding comfort and susceptibility to vibrations are among the other disadvantages of these decks. The major objective of this research was to develop alternative deck systems which weigh no more than 25 lb/ft2, have solid riding surface, are no more than 4–5 in. thick and are able to withstand prescribed loading. Three deck systems were considered in this study: ultra-high performance concrete (UHPC) deck, aluminum deck and UHPC-fiber reinforced polymer (FRP) tube deck. UHPC deck was the first alternative system developed as a part of this project. Due to its ultra high strength, this type of concrete results in thinner sections, which helps satisfy the strict self-weight limit. A comprehensive experimental and analytical evaluation of the system was carried out to establish its suitability. Both single and multi-unit specimens with one or two spans were tested for static and dynamic loading. Finite element models were developed to predict the deck behavior. The study led to the conclusion that the UHPC bridge deck is a feasible alternative to open grid steel deck. Aluminum deck was the second alternative system studied in this project. A detailed experimental and analytical evaluation of the system was carried out. The experimental work included static and dynamic loading on the deck panels and connections. Analytical work included detailed finite element modeling. Based on the in-depth experimental and analytical evaluations, it was concluded that aluminum deck was a suitable alternative to open grid steel decks and is ready for implementation. UHPC-FRP tube deck was the third system developed in this research. Prestressed hollow core decks are commonly used, but the proposed type of steel-free deck is quite novel. Preliminary experimental evaluations of two simple-span specimens, one with uniform section and the other with tapered section were carried out. The system was shown to have good promise to replace the conventional open grid decks. Additional work, however, is needed before the system is recommended for field application.
Resumo:
Climate change is one of the most important and urgent issues of our time. Since 2006, China has overtaken the United States as the world’s largest greenhouse gas (GHG) emitter. China’s role in an international climate change solution has gained increased attention. Although much literature has addressed the functioning, performance, and implications of existing climate change mitigation policies and actions in China, there is insufficient literature that illuminates how the national climate change mitigation policies have been formulated and shaped. This research utilizes the policy network approach to explore China’s climate change mitigation policy making by examining how a variety of government, business, and civil society actors have formed networks to address environmental contexts and influence the policy outcomes and changes. The study is qualitative in nature. Three cases are selected to illustrate structural and interactive features of the specific policy network settings in shaping different policy arrangements and influencing the outcomes in the Chinese context. The three cases include the regulatory evolution of China’s climate change policy making; the country’s involvement in the Clean Development Mechanism (CDM) activity, and China’s exploration of voluntary agreement through adopting the Top-1000 Industrial Energy Conservation Program. The historical analysis of the policy process uses both primary data from interviews and fieldwork, and secondary data from relevant literature. The study finds that the Chinese central government dominates domestic climate change policy making; however, expanded action networks that involve actors at all levels have emerged in correspondence to diverse climate mitigation policy arrangements. The improved openness and accessibility of climate change policy network have contributed to its proactive engagement in promoting mitigation outcomes. In conclusion, the research suggests that the policy network approach provides a useful tool for studying China’s climate change policy making process. The involvement of various types of state and non-state actors has shaped new relations and affected the policy outcomes and changes. In addition, through the cross-case analysis, the study challenges the “fragmented authoritarianism” model and argues that this once-influential model is not appropriate in explaining new development and changes of policy making processes in contemporary China.