928 resultados para Cleaning.
Resumo:
We present new isotopic data for sedimentary planktonic foraminifera, as well as for potential water column and sedimentary sources of neodymium (Nd), which confirm that the isotopic composition of the foraminifera is the same as surface seawater and very different from deep water and sedimentary Nd. The faithfulness with which sedimentary foraminifera record the isotopic signature of surface seawater Nd is difficult to explain given their variable and high Nd/Ca ratios, ratios that are often sedimentary foraminifera, ratios that are often much higher than is plausible for direct incorporation within the calcite structure. We present further data that demonstrate a similarly large range in Nd/Ca ratios in plankton tow foraminifera, a range that may be controlled by redox conditions in the water column. Cleaning experiments reveal, in common with earlier work, that large amounts of Nd are released by cleaning with both hydrazine and diethylene triamine penta-acetic acid, but that the Nd released at each step is of surface origin. While further detailed studies are required to verify the exact location of the surface isotopic signature and the key controls on foraminiferal Nd isotope systematics, these new data place the use of planktonic foraminifera as recorders of surface water Nd isotope ratios, and thus of variations in the past supply of Nd to the oceans from the continents via weathering and erosion, on a reasonably sure footing.
Resumo:
Lower Campanian to middle Eocene chalks and oozes were recovered at Sites 761 and 762 of Ocean Drilling Program Leg 122 on the Exmouth Plateau, northwest Australia. Paleomagnetic analyses were made on 125 samples from Hole 761B and 367 samples from Hole 762C. Thermal cleaning, alternating field demagnetization, or mixed treatment reveals a stable remanent component of normal or reversed polarity. Correlation of the magnetic polarity sequences established for these holes with the standard magnetic polarity time scale was aided by nannofossil zonation. At Hole 761B, the sequence extends from Subchron C32-N (upper Campanian) through Subchron C17-R (middle Eocene), but given the low sedimentation rate, not all the subchrons of the standard magnetic polarity sequence were recognized. The sequence at Hole 762C extends from Subchron C13-R (middle Eocene) to the boundary between Chrons C33 and C34 (lower Campanian). The sedimentation rate is higher at Hole 762C, and all the magnetic polarity subchrons of the Campanian and Maestrichtian stages were identified. Thus, this hole could be a reference section to refine the Upper Cretaceous time scale.
Resumo:
We present Mg/Ca data for Globigerina bulloides from 10 core top sites in the southwest Pacific Ocean analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Mg/Ca values in G. bulloides correlate with observed ocean temperatures (7°C-19°C), and when combined with previously published data, an integrated Mg/Ca-temperature calibration for 7°C-31°C is derived where Mg/Ca (mmol/mol) = 0.955 * e**(0.068 * T) (r**2 = 0.95). Significant variability of Mg/Ca values (20%-30%) was found for the four visible chambers of G. bulloides, with the final chamber consistently recording the lowest Mg/Ca and is interpreted, in part, to reflect changes in the depth habitat with ontogeny. Incipient and variable dissolution of the thin and fragile final chamber, and outermost layer concomitantly added to all chambers, caused by different cleaning techniques prior to solution-based ICPMS analyses, may explain the minor differences in previously published Mg/Ca-temperature calibrations for this species. If the lower Mg/Ca of the final chamber reflects changes in depth habitat, then LA-ICPMS of the penultimate (or older) chambers will most sensitively record past changes in near-surface ocean temperatures. Mean size-normalized G. bulloides test weights correlate negatively with ocean temperature (T = 31.8 * e**(-30.5*wtN); r**2 = 0.90), suggesting that in the southwest Pacific Ocean, temperature is a prominent control on shell weight in addition to carbonate ion levels.
Resumo:
Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources. This article is protected by copyright. All rights reserved.
Resumo:
Paired Mg/Ca and d18O measurements on planktonic foraminiferal species (G. ruber white, G. ruber pink, G. sacculifer, G. conglobatus, G. aequilateralis, O. universa, N. dutertrei, P. obliquiloculata, G. inflata, G. truncatulinoides, G. hirsuta, and G. crassaformis) from a 6-year sediment trap time series in the Sargasso Sea were used to define the sensitivity of foraminiferal Mg/Ca to calcification temperature. Habitat depths and calcification temperatures were estimated from comparison of d18O of foraminifera with equilibrium calcite, based on historical temperature and salinity data. When considered together, Mg/Ca (mmol/mol) of all species, except two, show a significant (r = 0.93) relationship with temperature (T °C) of the form Mg/Ca = 0.38 (±0.02) exp 0.090 (±0.003)T, equivalent to a 9.0 ± 0.3% change in Mg/Ca for a 1°C change in temperature. Small differences exist in calibrations between species and between different size fractions of the same species. O. universa and G. aequilateralis have higher Mg/Ca than other species, and in general, data can be best described with the same temperature sensitivity for all species and pre-exponential constants in the sequence O. universa > G. aequilateralis = G. bulloides > G. ruber = G. sacculifer = other species. This approach gives an accuracy of ±1.2°C in the estimation of calcification temperature. The 9% sensitivity to temperature is similar to published studies from culture and core top calibrations, but differences exist from some literature values of pre-exponential constants. Different cleaning methodologies and artefacts of core top dissolution are probably implicated, and perhaps environmental factors yet understood. Planktonic foraminiferal Mg/Ca temperature estimates can be used for reconstructing surface temperatures and mixed and thermocline temperatures (using G. ruber pink, G. ruber white, G. sacculifer, N. dutertrei, P. obliquiloculata, etc.). The existence of a single Mg thermometry equation is valuable for extinct species, although use of species-specific equations will, where statistically significant, provide more accurate evaluation of Mg/Ca paleotemperature.
Resumo:
Constraining the magnitude of high-latitude temperature change across the Eocene-Oligocene transition (EOT) is essential for quantifying the magnitude of Antarctic ice-sheet expansion and understanding regional climate response to this event. To this end, we constructed high-resolution stable oxygen isotope (d18O) and magnesium/calcium (Mg/Ca) records from planktic and benthic foraminifera at four Ocean Drilling Program (ODP) sites in the Southern Ocean. Planktic foraminiferal Mg/Ca records from the Kerguelen Plateau (ODP Sites 738, 744, and 748) show a consistent pattern of temperature change, indicating 2-3 °C cooling in direct conjunction with the first step of a two-step increase in benthic and planktic foraminiferal d18O values across the EOT. In contrast, benthic Mg/Ca records from Maud Rise (ODP Site 689) and the Kerguelen Plateau (ODP Site 748) do not exhibit significant temperature change. The contrasting temperature histories derived from the planktic and benthic Mg/Ca records are not reconcilable, since vertical d18O gradients remained nearly constant at all sites between 35.0 and 32.5 Ma. Based on the coherency of the planktic Mg/Ca records from the Kerguelen Plateau sites and complications with benthic Mg/Ca paleothermometry at low temperatures, the planktic Mg/Ca records are deemed the most reliable measure of Southern Ocean temperature change. We therefore interpret a uniform cooling of 2-3 °C in both deep surface (thermocline) waters and intermediate deep waters of the Southern Ocean across the EOT. Cooling of Southern Ocean surface waters across the EOT was likely propagated to the deep ocean, since deep waters were primarily sourced on the Antarctic margin throughout this time interval. Removal of the temperature component from the observed foraminiferal d18O shift indicates that seawater d18O values increased by 0.6 ± 0.15 per mil across the EOT interval, corresponding to an increase in global ice volume to a level equivalent with 60-130% modern East Antarctic ice sheet volume.
Resumo:
The Paleogene sequences from three sites in the Caribbean were examined for radiolarians. In general, samples are highly lithified, requiring lengthy and repetitive cleaning procedures, and the assemblages are usually fragmented and/or partially dissolved. Both abundances and preservation of the assemblages vary considerably from site to site and within a single site; even within a single sample more than one degree of preservation was observed. It was possible, however, to construct at least partial stratigraphies for each of the three sites. Because the abundance of radiolarians is high even in extremely poorly preserved assemblages, we conclude that the differences in biogenic silica preservation are the result of postdepositional processes and not productivity. In both Sites 999 and 1001, near the Paleocene/Eocene boundary (Bekoma bidartensis Zone [RP7]), there is a short interval in which the abundance and preservation state of the radiolarians improves relative to overlying and underlying assemblages. In each case the intervals corresponds to the level, identified by calcareous microfossils, as representing changes in paleoceanographic conditions associated with the late Paleocene thermal maximum.