998 resultados para Classical particle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical and biological processes, such as dissolution in gypsiferous sands and biodegradation in waste refuse, result in mass or particle loss, which in turn lead to changes in solid and void phase volumes and grading. Data on phase volume and grading changes have been obtained from oedometric dissolution tests on sand–salt mixtures. Phase volume changes are defined by a (dissolution-induced) void volume change parameter (Λ). Grading changes are interpreted using grading entropy coordinates, which allow a grading curve to be depicted as a single data point and changes in grading as a vector quantity rather than a family of distribution curves. By combining Λ contours with pre- to post-dissolution grading entropy coordinate paths, an innovative interpretation of the volumetric consequences of particle loss is obtained. Paths associated with small soluble particles, the loss of which triggers relatively little settlement but large increase in void ratio, track parallel to the Λ contours. Paths associated with the loss of larger particles, which can destabilise the sand skeleton, tend to track across the Λ contours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature Selection based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Williams, Mike, 'Why ideas matter in International Relations: Hans Morgenthau, Classical Realism, and the Moral Construction of Power Politics', International Organization (2004) 58(4) pp.633-665 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iantchenko, A.; Sj?strand, J.; Zworski, M., (2002) 'Birkhoff normal forms in semi-classical inverse problems', Mathematical Research Letters 9(3) pp.337-362 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topic of this thesis is an acoustic scattering technique for detennining the compressibility and density of individual particles. The particles, which have diameters on the order of 10 µm, are modeled as fluid spheres. Ultrasonic tone bursts of 2 µsec duration and 30 MHz center frequency scatter from individual particles as they traverse the focal region of two confocally positioned transducers. One transducer acts as a receiver while the other both transmits and receives acoustic signals. The resulting scattered bursts are detected at 90° and at 180° (backscattered). Using either the long wavelength (Rayleigh) or the weak scatterer (Born) approximations, it is possible to detennine the compressibility and density of the particle provided we possess a priori knowledge of the particle size and the host properties. The detected scattered signals are digitized and stored in computer memory. With this information we can compute the mean compressibility and density averaged over a population of particles ( typically 1000 particles) or display histograms of scattered amplitude statistics. An experiment was run first run to assess the feasibility of using polystyrene polymer microspheres to calibrate the instrument. A second study was performed on the buffy coat harvested from whole human blood. Finally, chinese hamster ovary cells which were subject to hyperthermia treatment were studied in order to see if the instrument could detect heat induced membrane blebbing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a fault model of Boolean gates, both classical and quantum, where some of the inputs may not be connected to the actual gate hardware. This model is somewhat similar to the stuck-at model which is a very popular model in testing Boolean circuits. We consider the problem of detecting such faults; the detection algorithm can query the faulty gate and its complexity is the number of such queries. This problem is related to determining the sensitivity of Boolean functions. We show how quantum parallelism can be used to detect such faults. Specifically, we show that a quantum algorithm can detect such faults more efficiently than a classical algorithm for a Parity gate and an AND gate. We give explicit constructions of quantum detector algorithms and show lower bounds for classical algorithms. We show that the model for detecting such faults is similar to algebraic decision trees and extend some known results from quantum query complexity to prove some of our results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For two multinormal populations with equal covariance matrices the likelihood ratio discriminant function, an alternative allocation rule to the sample linear discriminant function when n1 ≠ n2 ,is studied analytically. With the assumption of a known covariance matrix its distribution is derived and the expectation of its actual and apparent error rates evaluated and compared with those of the sample linear discriminant function. This comparison indicates that the likelihood ratio allocation rule is robust to unequal sample sizes. The quadratic discriminant function is studied, its distribution reviewed and evaluation of its probabilities of misclassification discussed. For known covariance matrices the distribution of the sample quadratic discriminant function is derived. When the known covariance matrices are proportional exact expressions for the expectation of its actual and apparent error rates are obtained and evaluated. The effectiveness of the sample linear discriminant function for this case is also considered. Estimation of true log-odds for two multinormal populations with equal or unequal covariance matrices is studied. The estimative, Bayesian predictive and a kernel method are compared by evaluating their biases and mean square errors. Some algebraic expressions for these quantities are derived. With equal covariance matrices the predictive method is preferable. Where it derives this superiority is investigated by considering its performance for various levels of fixed true log-odds. It is also shown that the predictive method is sensitive to n1 ≠ n2. For unequal but proportional covariance matrices the unbiased estimative method is preferred. Product Normal kernel density estimates are used to give a kernel estimator of true log-odds. The effect of correlation in the variables with product kernels is considered. With equal covariance matrices the kernel and parametric estimators are compared by simulation. For moderately correlated variables and large dimension sizes the product kernel method is a good estimator of true log-odds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis I present the work done during my PhD in the area of low dimensional quantum gases. The chapters of this thesis are self contained and represent individual projects which have been peer reviewed and accepted for publication in respected international journals. Various systems are considered, the first of which is a two particle model which possesses an exact analytical solution. I investigate the non-classical correlations that exist between the particles as a function of the tunable properties of the system. In the second work I consider the coherences and out of equilibrium dynamics of a one-dimensional Tonks-Girardeau gas. I show how the coherence of the gas can be inferred from various properties of the reduced state and how this may be observed in experiments. I then present a model which can be used to probe a one-dimensional Fermi gas by performing a measurement on an impurity which interacts with the gas. I show how this system can be used to observe the so-called orthogonality catastrophe using modern interferometry techniques. In the next chapter I present a simple scheme to create superposition states of particles with special emphasis on the NOON state. I explore the effect of inter-particle interactions in the process and then characterise the usefulness of these states for interferometry. Finally I present my contribution to a project on long distance entanglement generation in ion chains. I show how carefully tuning the environment can create decoherence-free subspaces which allows one to create and preserve entanglement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is centred on two experimental fields of optical micro- and nanofibre research; higher mode generation/excitation and evanescent field optical manipulation. Standard, commercial, single-mode silica fibre is used throughout most of the experiments; this generally produces high-quality, single-mode, micro- or nanofibres when tapered in a flame-heated, pulling rig in the laboratory. Single mode fibre can also support higher transverse modes, when transmitting wavelengths below that of their defined single-mode regime cut-off. To investigate this, a first-order Laguerre-Gaussian beam, LG01 of 1064 nm wavelength and doughnut-shaped intensity profile is generated free space via spatial light modulation. This technique facilitates coupling to the LP11 fibre mode in two-mode fibre, and convenient, fast switching to the fundamental mode via computer-generated hologram modulation. Following LP11 mode loss when exponentially tapering 125μm diameter fibre, two mode fibre with a cladding diameter of 80μm is selected fir testing since it is more suitable for satisfying the adiabatic criteria for fibre tapering. Proving a fruitful endeavour, experiments show a transmission of 55% of the original LP11 mode set (comprising TE01, TM01, HE21e,o true modes) in submicron fibres. Furthermore, by observing pulling dynamics and progressive mode-lass behaviour, it is possible to produce a nanofibre which supports only the TE01 and TM01 modes, while suppressing the HE21e,o elements of the LP11 group. This result provides a basis for experimental studies of atom trapping via mode-interference, and offers a new set of evanescent field geometries for sensing and particle manipulation applications. The thesis highlights the experimental results of the research unit’s Cold Atom subgroup, who successfully integrated one such higher-mode nanofibre into a cloud of cold Rubidium atoms. This led to the detection of stronger signals of resonance fluorescence coupling into the nanofibre and for light absorption by the atoms due to the presence of higher guided modes within the fibre. Theoretical work on the impact of the curved nanofibre surface on the atomic-surface van der Waals interaction is also presented, showing a clear deviation of the potential from the commonly-used flat-surface approximation. Optical micro- and nanofibres are also useful tools for evanescent-field mediated optical manipulation – this includes propulsion, defect-induced trapping, mass migration and size-sorting of micron-scale particles in dispersion. Similar early trapping experiments are described in this thesis, and resulting motivations for developing a targeted, site-specific particle induction method are given. The integration of optical nanofibres into an optical tweezers is presented, facilitating individual and group isolation of selected particles, and their controlled positioning and conveyance in the evanescent field. The effects of particle size and nanofibre diameter on pronounced scattering is experimentally investigated in this systems, as are optical binding effects between adjacent particles in the evanescent field. Such inter-particle interactions lead to regulated self-positioning and particle-chain speed enhancements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the "worm algorithm." Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane. © 2010 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation and fugue originated from the 15th and 16th centuries and blossomed during the Baroque and Classical Periods. In a variation, a theme with a particular structure precedes a series of pieces that usually have the same or very similar structure. A fugue is a work written in imitative counterpoint in which the theme is stated successively in all voices of polyphonic texture. Beethoven’s use of variation and fugue in large scale works greatly influenced his contemporaries. After the Classical Period, variations continued to be popular, and numerous composers employed the technique in various musical genres. Fugues had pedagogical associations, and by the middle of 19th century became a requirement in conservatory instruction, modeled after Bach’s Well-Tempered Clavier. In the 20th century, the fugue was revived in the spirit of neoclassicism; it was incorporated in sonatas, and sets of preludes and fugues were composed. Schubert's Wanderer Fantasy presents his song Der Wanderer through thematic transformations, including a fugue and a set of variations. Liszt was highly influenced by this, as shown in his thematic transformations and the fugue as one of the transformations in his Sonata in b. In Schumann’s Symphonic Études, Rachmaninoff's Rhapsody on a Theme of Paganini and Copland’s Piano Variations, the variation serves as the basis for the entire work. Prokofiev and Schubert take a different approach in Piano Concerto No. 3 and Wanderer Fantasy, employing the variation in a single movement. Unlike Schubert and Liszt's use of the fugue as a part of the piece or movement, Franck’s Prelude Chorale et Fugue and Shchedrin’s Polyphonic Notebook use it in its independent form. Since the Classical Period, the variation and fugue have evolved from stylistic and technical influences of earlier composers. It is interesting and remarkable to observe the unique effects each had on a particular work. As true and dependable classic forms, they remain popular by offering the composer an organizational framework for musical imagination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although evidence of Gluck's influence on Mozart is sometimes discernible, by examining the two operas I have performed and a recital of arias by these two composers we can see clear contrasts in their approach to and expression of classical opera. The two operas discussed are Gluck's Armide and Mozart's Le Nozze di Figaro. Gluck and Mozart were both innovators but in very different ways. Gluck comes from a dramatic background (his principles have been compared to those of Wagner) and Mozart brings together dramatic excellence with the greatness of his musical genius, his gift of melody, and his ensemble writing, which is arguably unequaled in the repertory. A well-rounded performer strives to understand what the composer is really trying to say with his work, what the message to the audience is and what his particular way of conveying it is. The understanding of a composer's approach to drama and character interaction plays a huge role in character development. This applies no matter what role you are preparing whether it is baroque opera or late romantic. Discovering the ideals, style, and purpose of a composer contributes to an effective and rewarding performance experience, for those on stage, those in the pit, and those sitting in the seats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation explores the transformation of opera comique (as represented by the opera Carmen) and the impact of verismo style (as represented by the opera La Boheme) upon the development of operetta, American musical theater and the resultant change in vocal style. Late nineteenth-century operetta called for a classically trained soprano voice with a clear vibrato. High tessitura and legato were expected although the quality of the voice was usually lighter in timbre. The dissertation comprises four programs that explore the transformation of vocal and compositional style into the current vocal performance practice of American musical theater. The first two programs are operatic roles and the last two are recital presentations of nineteenth- and twentieth- century operetta and musical theater repertoire. Program one, Carmen, was presented on July 26, 2007 at the Marshall Performing Arts Center in Duluth, MN where I sang the role of Micaela. Program two, La Boheme, was presented on May 24,2008 at Randolph Road Theater in Silver Spring, MD where I sang the role of Musetta. Program three, presented on December 2, 2008 and program four, presented on May 10, 2009 were two recitals featuring operetta and musical theater repertoire. These programs were heard in the Gildenhorn Recital Hall at the Clarice Smith Performing Arts Center in College Park, MD. Programs one and two are documented in a digital video format available on digital video disc. Programs three and four are documented in a digital audio format available on compact disc. All programs are accompanied by program notes also available in digital format.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published