948 resultados para Cervical lateral mass - Technique to insert a screw
Resumo:
OBJECTIVE: To investigate the prefabrication of vascularized mucosa-lined composite grafts intended to replace circumferential tracheal defects. DESIGN: Plane grafts composed of ear cartilage and full-thickness oral mucosa were revascularized by the laterothoracic fascia. The use of meshed vs nonmeshed mucosa to improve the epithelial coverage was examined. We also investigated the creation of a vascular bed over the cartilage and the subsequent application of meshed mucosa. Macroscopic aspects, viability, and degree of mucosal lining were analyzed. SUBJECTS: Twenty male New Zealand white rabbits. INTERVENTIONS: Ten animals underwent placement of auricular cartilage under the laterothoracic fascia. Intact (group 1) or meshed mucosa (group 2) was applied over the fascia and protected by a silicone sheet. After 3 weeks, prefabricated grafts were removed for comparison. In 10 other animals, a sheet of perforated cartilage was placed under the laterothoracic fascia. Two weeks later, 5 grafts (group 3) were harvested. The remaining 5 grafts were reopened for mucosal application over the cartilage and revascularized for 3 additional weeks (group 4). RESULTS: Vascularized plane grafts were obtained in all groups. Mucosal lining increased significantly with meshed mucosa (14%-68%; mean, 40%) compared with nonmeshed mucosa (3%-15%; mean, 10%) (P = .008). Induction of a vascular bed over perforated cartilage was achieved, but survival of secondary implanted mucosa was variable. CONCLUSIONS: A reliable technique to prefabricate composite grafts with cartilaginous support and mucosal lining is presented. The use of meshed mucosa significantly improves epithelial coverage.
Resumo:
This study compares smear, growth in Lowenstein-Jensen medium, and in-house polymerase chain reaction (PCR) techniques for the detection of Mycobacterium tuberculosis. A total of 72 specimens from 72 patients with clinical symptoms of tuberculosis, including 70 sputum and two bronchial aspirate samples, were tested in parallel by smear, culture, and in-house PCR techniques. From these, 48 (66.6%) were negative by the 3 methods, 2 (2.8%) were smear positive and negative by culture and in-house PCR, 11 (15.3%) were both smear and culture negative, and in-house PCR positive, 7 (9.7%) were positive by the 3 methods, 2 (2.8%) were positive by smear and culture, and negative by PCR, 2 (2.8%) were positive by culture and PCR, but smear negative. After the resolution of discrepancies in PCR results, the sensitivity and specificity for in-house PCR technique to M. tuberculosis relative to the culture, were 81.8% and 81.9%, respectively. These results confirm that this method, in-house PCR, may be a sensitive and specific technique for M. tuberculosis detection, occurring in both positive and negative smear and negative cultures.
Resumo:
Very large subsidence, with up to 20 km thick sediment layers, is observed in the East Barents Sea basin. Subsidence started in early Paleozoic, accelerated in Permo-Triassic times, finished during the middle Cretaceous, and was followed by moderate uplift in Cenozoic times. The observed gravity signal suggests that the East Barents Sea is at present in isostatic balance and indicates that a mass excess is required in the lithosphere to produce the observed large subsidence. Several origins have been proposed for the mass excess. We use 1-D thermokinematic modeling and 2-D isostatic density models of continental lithosphere to evaluate these competing hypotheses. The crustal density in 2-D thermokinematic models resulting from pressure-, temperature-, and composition-dependent phase change models is computed along transects crossing the East Barents Sea. The results indicate the following. (1) Extension can only explain the observed subsidence provided that a 10 km thick serpentinized mantle lens beneath the basin center is present. We conclude that this is unlikely given that this highly serpentinized layer should be formed below a sedimentary basin with more than 10 km of sediments and crust at least 10 km thick. (2) Phase changes in a compositionally homogeneous crust do not provide enough mass excess to explain the present-day basin geometry. (3) Phase change induced densification of a preexisting lower crustal gabbroic body, interpreted as a mafic magmatic underplate, can explain the basin geometry and observed gravity anomalies. The following model is proposed for the formation of the East Barents Sea basin: (1) Devonian rifting and extension related magmatism resulted in moderate thinning of the crust and a mafic underplate below the central basin area explaining initial late Paleozoic subsidence. (2) East-west shortening during the Permian and Triassic resulted in densification of the previously emplaced mafic underplated body and enhanced subsidence dramatically, explaining the present-day deep basin geometry.
Resumo:
The technique to generate transgenic mosquitoes requires adaptation for each target species because of aspects related to species biology, sensitivity to manipulation and rearing conditions. Here we tested different parameters on the microinjection procedure in order to obtain a transgenic Neotropical mosquito species. By using a transposon-based strategy we were able to successfully transform Aedes fluviatilis (Lutz), which can be used as an avian malaria model. These results demonstrate the usefulness of the piggyBac transposable element as a transformation vector for Neotropical mosquito species and opens up new research frontiers for South American mosquito vectors.
Resumo:
Small mammals are found naturally infected by Schistosoma mansoni, becoming a confounding factor for control programs of schistosomiasis in endemic areas. The aims of this study were: to investigate the infection rates by S. mansoni on the water-rat Nectomys squamipes during four years in endemic areas of Sumidouro, state of Rio de Janeiro, using mark-recapture technique; to compare two diagnostic methods for schistosomiasis; and to evaluate the effects of the chemotherapy in the human infected population on the rodent infection rates. The rodent infection rates of S. mansoni increased when rodent population sizes were lower. Coprology and serology results presented the same trends along time and were correlated. Serology could detect recent infection, including the false negatives in the coprology. The chemotherapy in the humans could not interrupt the rodent infection. Rodents can increase the schistosomiaisis transmission where it already exists, they probably maintain the transmission cycle in the nature and can be considered as biological indicators of the transmission sites of this parasite since they are highly susceptible to infection. The water-rats may present different levels of importance in the transmission dynamics of S. mansoni infection cycle for each area, and can be considered important wild-reservoirs of this human disease.
Resumo:
PURPOSE: The aim of this study was to test whether oligonucleotide-targeted gene repair can correct the point mutation in genomic DNA of PDE6b(rd1) (rd1) mouse retinas in vivo. METHODS: Oligonucleotides (ODNs) of 25 nucleotide length and complementary to genomic sequence subsuming the rd1 point mutation in the gene encoding the beta-subunit of rod photoreceptor cGMP-phosphodiesterase (beta-PDE), were synthesized with a wild type nucleotide base at the rd1 point mutation position. Control ODNs contained the same nucleotide bases as the wild type ODNs but with varying degrees of sequence mismatch. We previously developed a repeatable and relatively non-invasive technique to enhance ODN delivery to photoreceptor nuclei using transpalpebral iontophoresis prior to intravitreal ODN injection. Three such treatments were performed on C3H/henJ (rd1) mouse pups before postnatal day (PN) 9. Treatment outcomes were evaluated at PN28 or PN33, when retinal degeneration was nearly complete in the untreated rd1 mice. The effect of treatment on photoreceptor survival was evaluated by counting the number of nuclei of photoreceptor cells and by assessing rhodopsin immunohistochemistry on flat-mount retinas and sections. Gene repair in the retina was quantified by allele-specific real time PCR and by detection of beta-PDE-immunoreactive photoreceptors. Confirmatory experiments were conducted using independent rd1 colonies in separate laboratories. These experiments had an additional negative control ODN that contained the rd1 mutant nucleotide base at the rd1 point mutation site such that the sole difference between treatment with wild type and control ODN was the single base at the rd1 point mutation site. RESULTS: Iontophoresis enhanced the penetration of intravitreally injected ODNs in all retinal layers. Using this delivery technique, significant survival of photoreceptors was observed in retinas from eyes treated with wild type ODNs but not control ODNs as demonstrated by cell counting and rhodopsin immunoreactivity at PN28. Beta-PDE immunoreactivity was present in retinas from eyes treated with wild type ODN but not from those treated with control ODNs. Gene correction demonstrated by allele-specific real time PCR and by counts of beta-PDE-immunoreactive cells was estimated at 0.2%. Independent confirmatory experiments showed that retinas from eyes treated with wild type ODN contained many more rhodopsin immunoreactive cells compared to retinas treated with control (rd1 sequence) ODN, even when harvested at PN33. CONCLUSIONS: Short ODNs can be delivered with repeatable efficiency to mouse photoreceptor cells in vivo using a combination of intravitreal injection and iontophoresis. Delivery of therapeutic ODNs to rd1 mouse eyes resulted in genomic DNA conversion from mutant to wild type sequence, low but observable beta-PDE immunoreactivity, and preservation of rhodopsin immunopositive cells in the outer nuclear layer, suggesting that ODN-directed gene repair occurred and preserved rod photoreceptor cells. Effects were not seen in eyes treated with buffer or with ODNs having the rd1 mutant sequence, a definitive control for this therapeutic approach. Importantly, critical experiments were confirmed in two laboratories by several different researchers using independent mouse colonies and ODN preparations from separate sources. These findings suggest that targeted gene repair can be achieved in the retina following enhanced ODN delivery.
Resumo:
An 11-year-old Brown Swiss cow was referred to the Farm Animal Department of the Veterinary Teaching Hospital in Zurich, Switzerland, because of lateral recumbency due to puerperal hemolytic anemia. The animal had developed enophthalmos due to dehydration at the time of presentation. Two days after hospitalization, the cow showed blepharospasm and epiphora of the right eye. Ophthalmic examination of the right eye revealed a fluorescein-positive, paraxial, superficial corneal ulcer with focal edema, and mild superficial neovascularization. White corneal stromal infiltrates were seen at the edges of the ulcer bed. After initial topical treatment with an antibiotic ointment (Neomycin 3.5 mg/g, Bacitracin 250 IU/g) three times a day, an increase in corneal infiltrates was noted on re-examination 2 days later. Several fluorescein-negative, punctate, stromal, white opacities were seen dorsal to the ulcer. Cytology demonstrated the presence of fungal hyphae. Topical treatment with 2% miconazole ointment and 0.36% K-EDTA eye drops six times daily and four times daily, respectively, from the second day and continued antibiotics three times daily resolved the clinical symptoms within 6 days. Fungal culture identified the fungal organism as Eurotium amstelodami.
Resumo:
To date, myxoma on a mechanical valve annulus has not been reported. The case is reported of a 74-year-old woman who was admitted to hospital following the identification of an intracardiac tumor mass. Six years previously, the patient had received a mechanical valve implanted in the mitral position. Transesophageal echocardiography revealed a mobile hypoechogenic tumorous mass attached to the anterior annulus of the prosthesis. The tumor was successfully treated by surgical excision, and a diagnosis of myxoma was confirmed both clinically and pathologically.
Resumo:
Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide and there is a strong link between certain high-risk viral types and cervical carcinogenesis. Although there are several typing methods, it is still unclear which test is the best. This study compared the effectiveness of type-specific PCR (TS-PCR) and sequencing, with a focus on their clinical application. A total of 260 cervical samples from HPV-positive patients were tested for types 6, 11, 16, 18, 31, 33 and 35 using TS-PCR and sequencing. The genotype was identified in 36% of cases by TS-PCR and in 75% by sequencing. Sequencing was four times more likely to identify the viral type in positive samples than TS-PCR (p = 0.00). Despite being more effective for virus genotyping, sequencing was unable to identify viral types in multiple infections. Combining both techniques resulted in highly sensitive detection (87% of cases), showing that they are complementary methods. HPV genotyping is an important step in HPV management, helping to identify patients with a higher risk of developing cervical cancer and contributing to the development of type-specific vaccines.
Resumo:
This paper describes the improvements achieved in our mosaicking system to assist unmanned underwater vehicle navigation. A major advance has been attained in the processing of images of the ocean floor when light absorption effects are evident. Due to the absorption of natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination for processing underwater images. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion. In this paper a technique to correct non-uniform lighting is proposed. The acquired frames are compensated through a point-by-point division of the image by an estimation of the illumination field. Then, the gray-levels of the obtained image remapped to enhance image contrast. Experiments with real images are presented
Resumo:
Stiffness tomography is a new atomic force microscopy imaging technique that allows highlighting structures located underneath the surface of the sample. In this imaging mode, such structures are identified by investigating their mechanical properties. We present here, for the first time, a description of the use of this technique to acquire detailed stiffness maps of fixed and living macrophages. Indeed, the mechanical properties of several macrophages were studied through stiffness tomography imaging, allowing some insight of the structures lying below the cell's surface. Through these investigations, we were able to evidence the presence and properties of stiff column-like features located underneath the cell membrane. To our knowledge, this is the first evidence of the presence, underneath the cell membrane, of such stiff features, which are in dimension and form compatible with phagosomes. Moreover, by exposing the cells to cytochalasin, we were able to study the induced modifications, obtaining an indication of the location and mechanical properties of the actin cytoskeleton. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
To assess the behavior of the arterial wall in hypertensive patients, we developed a noninvasive ultrasonic device. Simultaneous recordings of internal diameter and blood pressure over the whole cardiac cycle are used to establish compliance-pressure curves. Blood pressure, which is a co-determinant of compliance, is thus taken into account. This method allows one to compare arteries from patients with different blood pressures. Arterial compliance and distensibility were first investigated in healthy young volunteers administered either lisinopril (20 mg), atenolol (100 mg) or nitrendipine (20 mg) once a day. After 8 days of treatment, only lisinopril was found to increase arterial compliance. Subsequently, we compared arterial diameter- and distensibility-pressure curves from newly diagnosed and untreated hypertensive patients with those of matched normotensive control patients. Diameter-pressure curves did not differ significantly between the groups and distensibility was not reduced. Similar findings were later obtained in an animal model, when mechanical properties of carotid arteries were compared between spontaneously hypertensive rats and normotensive counterparts (Wistar-Kyoto rats). These results, although interesting by providing noninvasive information on the elastic response of the wall, call for further development of the technique to be able to measure arterial wall thickness. Stress-strain relationship could ultimately be established to thoroughly characterize physical properties of blood vessel walls.
Resumo:
Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.
Resumo:
The antennal lobe is the primary olfactory center in the insect brain and represents the anatomical and functional equivalent of the vertebrate olfactory bulb. Olfactory information in the external world is transmitted to the antennal lobe by olfactory sensory neurons (OSNs), which segregate to distinct regions of neuropil called glomeruli according to the specific olfactory receptor they express. Here, OSN axons synapse with both local interneurons (LNs), whose processes can innervate many different glomeruli, and projection neurons (PNs), which convey olfactory information to higher olfactory brain regions. Optical imaging of the activity of OSNs, LNs and PNs in the antennal lobe - traditionally using synthetic calcium indicators (e.g. calcium green, FURA-2) or voltage-sensitive dyes (e.g. RH414) - has long been an important technique to understand how olfactory stimuli are represented as spatial and temporal patterns of glomerular activity in many species of insects. Development of genetically-encoded neural activity reporters, such as the fluorescent calcium indicators G-CaMP and Cameleon, the bioluminescent calcium indicator GFP-aequorin, or a reporter of synaptic transmission, synapto-pHluorin has made the olfactory system of the fruitfly, Drosophila melanogaster, particularly accessible to neurophysiological imaging, complementing its comprehensively-described molecular, electrophysiological and neuroanatomical properties. These reporters can be selectively expressed via binary transcriptional control systems (e.g. GAL4/UAS, LexA/LexAop, Q system) in defined populations of neurons within the olfactory circuitry to dissect with high spatial and temporal resolution how odor-evoked neural activity is represented, modulated and transformed. Here we describe the preparation and analysis methods to measure odor-evoked responses in the Drosophila antennal lobe using G-CaMP. The animal preparation is minimally invasive and can be adapted to imaging using wide-field fluorescence, confocal and two-photon microscopes.
Resumo:
A transportable Raman spectrometer was tested for the detection of illicit drugs seized during border controls. In a first step, the analysis methodology was optimized using reference substances such as diacetylmorphine (heroin), cocaine and amphetamine (as powder or liquid forms). Adequate focalisation distance and times of analysis, influence of daylight and artificial light sources, repeatability and limits of detection were studied. In a second step the applications and limitations of the technique to detect the illicit substances in different mixtures and containers was evaluated. Transportable Raman spectroscopy was found to be adequate for a rapid screen of liquids and powders for the detection and identification of controlled substances. Additionally, it had the advantage over other portable techniques, such as ion mobility spectrometry, of being non-destructive and capable of rapid analysis of large quantities of substances through containers such as plastic bags and glass bottles.