902 resultados para Central Region
Resumo:
From the Introduction. In 2012, China approached the countries of Central-Eastern Europe (CEE) with a proposal concerning regional cooperation in the ‘16+1’ formula. According to Chinese analysts, the rationale behind this breakthrough decision was Beijing’s acknowledgment of the growing importance of the region’s states within the European Union as well as a partial elimination of the ideological differences which had hamstrung cooperation in previous years. It seems that the eurozone crisis may be perceived as the reason for the CEE states’ increased interest in developing their cooperation with China. These circumstances have opened a ‘window of opportunity’ which Beijing has decided to exploit to create a kind of bridgehead in the region which it could later use in its further economic expansion in Europe. Apart from opening the CEE region up for investments, the ‘16+1’ format was intended to facilitate the shaping of relations between China and the EU and to become a tool in building a positive image for China. Chinese experts agree that after three years of functioning, the ‘16+1’ regional cooperation format has helped Beijing achieve its goals only to a limited extent. The major obstacles have included: the immense diversification of the region, barriers related to EU law, insufficient expertise on the part of Chinese companies, the asymmetry of economic needs on both sides, and no willingness within the region itself to develop cooperation. Regardless of the limited effectiveness of activities carried out so far, China has continued its ‘16+1’ initiative. This continuation and the progressing institutionalisation of cooperation in the ‘16+1’ format have often seemed superficial. China has been using this multi-party formula to improve its long-term bilateral relations with selected states in the region and thereby to create a basis for Beijing’s political and economic presence in Central-Eastern Europe.
Resumo:
In a globalised world, knowledge of foreign languages is an important skill. Especially in Europe, with its 24 official languages and its countless regional and minority languages, foreign language skills are a key asset in the labour market. Earlier research shows that over half of the EU27 population is able to speak at least one foreign language, but there is substantial national variation. This study is devoted to a group of countries known as the Visegrad Four, which comprises the Czech Republic, Hungary, Poland and Slovakia. Although the supply of foreign language skills in these countries appears to be well-documented, less is known about the demand side. In this study, we therefore examine the demand for foreign language skills on the Visegrad labour markets, using information extracted from online job portals. We find that English is the most requested foreign language in the region, and the demand for English language skills appears to go up as occupations become increasingly complex. Despite the cultural, historical and economic ties with their German-speaking neighbours, German is the second-most-in-demand foreign language in the region. Interestingly, in this case there is no clear link with the complexity of an occupation. Other languages, such as French, Spanish and Russian, are hardly requested. These findings have important policy implications with regards to the education and training offered in schools, universities and job centres.
Resumo:
The major geologic units of the Itremo region in central Madagascar include: (1) upper amphibolite to granulite facies (higher grade) Precambrian rocks, mainly para- and orthogneisses, and migmatites; (2) the newly defined Itremo Nappes, a fold-and-thrust belt containing the Proterozoic Itremo Group sediments, metamorphosed at greenschist to lower amphibolite facies (lower grade) conditions: (3) Middle Neoproterozoic and Late Neoproterozoic-Cambrian intrusives. The stratigraphic succession of the Itremo Group in the eastern part of the Itremo region is, from bottom to top: quartzites, metapelites, metacarbonates and metapelites overlain by metacarbonates. During D1 the Itremo Group sediments were detached from their continental substratum, deformed into a fold-and-thrust nappe (Itremo Nappes), and transported on top of higher grade rocks that are intruded by Middle Neoproterozoic (c. 797–780 Ma) granites and gabbros. A second phase of deformation shortening (D2) affected both the Itremo Sedimentary Nappes and structurally underlying higher-grade rocksunits, and formed large-scale N-S-trending F2 folds. S1 axial plane foliations in Itremo Group sediments are truncated by Late Neoproterozoic-Cambrian granites (c. 570–540 Ma). The age of the formation of the Itremo Nappes is not well constrained: they formed in Neoproterozoic times between 780 and 570 Ma.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"MMS 96-0027"--Vol. 2.
Resumo:
Vol. II-III by Lionel de Nicéville.
Resumo:
"Contract no. 14-12-0001-30057."
Resumo:
Mode of access: Internet.
Resumo:
High-impact, localized intense rainfall episodes represent a major socio-economic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HARMONIE regional climate model (HCLIM) with three different setups; two using convection parameterization at 15 and 6.25 km horizontal resolution (the latter within the “grey-zone” scale), with lateral boundary conditions provided by ERA-Interim reanalysis and integrated over a pan-European domain, and one with explicit convection at 2 km resolution (HCLIM2) over the Alpine region driven by the 15 km model. Seven summer seasons were sampled and validated against two high-resolution observational data sets. All HCLIM versions underestimate the number of dry days and hours by 20-40%, and overestimate precipitation over the Alpine ridge. Also, only modest added value were found of “grey-zone” resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at sub-daily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and meso-scale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.
Resumo:
Projected air and ground temperatures are expected to be higher in Arctic and sub-Arcticlatitudes and with temperatures already close to the limit where permafrost can exist,resistance against degradation is low. With thawing permafrost, the landscape is modifiedwith depression in which thermokarst lakes emerge. In permafrost soils a considerableamount of soil organic carbon is stored, with the potential of altering climate even furtherif expansion and formation of new thermokarst lakes emerge, as decay releasesgreenhouse gases (C02 and CH4) to the atmosphere. Analyzing the spatial distribution andmorphometry over time of thermokarst lakes and other water bodies, is of importance inaccurately predict carbon budget and feedback mechanisms, as well as to assess futurelandscape layout and these features interaction. Different types of high-spatial resolutionaerial and satellite imageries from 1963, 1975, 2003, 2010 and 2015, were used in bothpre- and post-classification change detection analyses. Using object oriented segmentationin eCognition combined with manual adjustments, resulted in digitalized water bodies>28m2 from which direction of change and morphometric values were extracted. Thequantity of thermokarst lakes and other water bodies was in 1963 n=92, with succeedingyears as a trend decreased in numbers, until 2010-2015 when eleven water bodies wereadded in 2015 (n=74 to n=85). In 1963-2003, area of these water bodies decreased with50 651m2 (189 446-138 795m2) and continued to decrease in 2003-2015 ending at 129337m2. Limnicity decreased from 19.9% in 1963 to 14.6% in 2003 (-5.3%). In 2010 and2015 13.7-13.6%. The late increase in water bodies differs from an earlier hypothesis thatsporadic permafrost regions experience decrease in both area and quantity of thermokarstlakes and water bodies. During 1963-2015, land gain has been in dominance of the ratiobetween the two competing processes of expansion and drainage. In 1963-1975, 55/45%,followed by 90/10% in 1975-2003. After major drainage events, land loss increased to62/38% in 2010-2015. Drainage and infilling rates, calculated for 15 shorelines werevaried across both landscape and parts of shorelines, with in average 0.17/0.15/0.14m/yr.Except for 1963-1975 when rate of change in average was in opposite direction (-0.09m/yr.), likely due to evident expansion of a large thermokarst lake. Using a squaregrid, distribution of water bodies was determined, with an indistinct cluster located in NEand central parts. Especially for water bodies <250m2, which is the dominant area classthroughout 1963-2015 ranging from n=39-51. With a heterogeneous composition of bothsmall and large thermokarst lakes, and with both expansion and drainage altering thelandscape in Tavvavuoma, both positive and negative climate feedback mechanisms are inplay - given that sporadic permafrost still exist.
Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium
Resumo:
The chloroplast genes of dinoflagellates are distributed among small, circular dsDNA molecules termed minicircles. In this paper, we describe the structure of the non-coding region of the psbA minicircle from Symbiodinium. DNA sequence was obtained from five Symbiodinium strains obtained from four different coral host species (Goniopora tenuidens, Heliofungia actiniformis, Leptastrea purpurea and Pocillopora damicornis), which had previously been determined to be closely related using LSU rDNA region D1/D2 sequence analysis. Eight distinct sequence blocks, consisting of four conserved cores interspersed with two metastable regions and flanked by two variable regions, occurred at similar positions in all strains. Inverted repeats (IRs) occurred in tandem or 'twin' formation within two of the four cores. The metastable regions also consisted of twin IRs and had modular behaviour, being either fully present or completely absent in the different strains. These twin IRs are similar in sequence to double-hairpin elements (DHEs) found in the mitochondrial genomes of some fungi, and may be mobile elements or may serve a functional role in recombination or replication. Within the central unit (consisting of the cores plus the metastable regions), all IRs contained perfect sequence inverses, implying they are highly evolved. IRs were also present outside the central unit but these were imperfect and possessed by individual strains only. A central adenine-rich sequence most closely resembled one in the centre of the non-coding part of Amphidinium operculatum minicircles, and is a potential origin of replication. Sequence polymorphism was extremely high in the variable regions, suggesting that these regions may be useful for distinguishing strains that cannot be differentiated using molecular markers currently available for Symbiodinium.
Resumo:
The houbara bustard, Chlamydotis undulata, is a declining cryptic desert bird whose range extends from North Africa to Central Asia. Three subspecies are currently recognized by geographical distribution and morphology: C.u.fuertaventurae, C.u.undulata and C.u.macqueenii. We have sequenced 854 bp of mitochondrial control region from 73 birds to describe their population genetic structure with a particular sampling focus on the connectivity between C.u.fuertaventurae and C.u.undulata along the Atlantic seaboard of North Africa. Nucleotide and haplotypic diversity varied among the subspecies being highest in C.u.undulata, lowest in C.u.fuertaventurae and intermediate in C.u.macqueenii. C.u.fuertaventurae and C.u.undulata are paraphyletic and an average nucleotide divergence of 2.08% splits the later from C.u.macqueenii. We estimate that C.u.fuertaventurae and C.u.undulata split from C.u.macqueenii approximately 430 000 years ago. C.u.fuertaventurae and C.u.undulata are weakly differentiated (F-ST = 0.27, N-m = 1.3), indicative of a recent shared history. Archaeological evidence indicates that houbara bustards have been present on the Canary Islands for 130-170 000 years. However, our genetic data point to a more recent separation of C.u.fuertaventurae and C.u.undulata at around 20-25 000 years. Concordant archaeological, climatic opportunities for colonization and genetic data point to a scenario of: (i) initial colonization of the Canary Islands about 130 000 years ago; (ii) a period of secondary contact 19-30 000 years ago homogenizing any pre-existing genetic structure followed by; (iii) a period of relative isolation that persists today.
Resumo:
Areas of the landscape that are priorities for conservation should be those that are both vulnerable to threatening processes and that if lost or degraded, will result in conservation targets being compromised. While much attention is directed towards understanding the patterns of biodiversity, much less is given to determining the areas of the landscape most vulnerable to threats. We assessed the relative vulnerability of remaining areas of native forest to conversion to plantations in the ecologically significant temperate rainforest region of south central Chile. The area of the study region is 4.2 million ha and the extent of plantations is approximately 200000 ha. First, the spatial distribution of native forest conversion to plantations was determined. The variables related to the spatial distribution of this threatening process were identified through the development of a classification tree and the generation of a multivariate. spatially explicit, statistical model. The model of native forest conversion explained 43% of the deviance and the discrimination ability of the model was high. Predictions were made of where native forest conversion is likely to occur in the future. Due to patterns of climate, topography, soils and proximity to infrastructure and towns, remaining forest areas differ in their relative risk of being converted to plantations. Another factor that may increase the vulnerability of remaining native forest in a subset of the study region is the proposed construction of a highway. We found that 90% of the area of existing plantations within this region is within 2.5 km of roads. When the predictions of native forest conversion were recalculated accounting for the construction of this highway, it was found that: approximately 27000 ha of native forest had an increased probability of conversion. The areas of native forest identified to be vulnerable to conversion are outside of the existing reserve network. (C) 2004 Elsevier Ltd. All tights reserved.