922 resultados para Cellulose, acetylation of
Resumo:
Inaug.-Diss.--Erlangen.
Resumo:
Mode of access: Internet.
Resumo:
We measured plasma tafenoquine concentrations in Thai soldiers given a monthly regimen of tafenoquine to determine whether these concentrations adequately suppressed malarial infections on the Thai- Cambodian border. After receiving a treatment course of artesunate and doxycycline, 104 male soldiers were administered a loading dose of tafenoquine ( 400 mg daily for 3 days), followed by tafenoquine monthly ( 400 mg every 4 weeks) for 5 months. Consecutive monthly mean ( +/- standard deviation) trough plasma tafenoquine concentrations were 223 +/- 41, 127 +/- 29, 157 +/- 51. 120 +/- 24, and 88 +/- ng/ mL. Only 1 soldier developed malaria during the study. At the time of malaria diagnosis, his plasma tafenoquine concentration was 40 ng/ mL, which was similar to 3- fold lower than the trough concentrations of the other soldiers. Although low tafenoquine concentrations appear to be uncommon, additional investigations are needed to determine the relationship between plasma tafenoquine concentrations and suppression of malaria.
Resumo:
Histone deacetylase inhibitors (HDACi) are a promising new class of chemotherapeutic drug currently in early phase clinical trials. A large number of structurally diverse HDACi have been purified or synthesised that mostly inhibit the activity of all eleven class I and II HDACs. While these agents demonstrate many features required for anti-cancer activity such as low toxicity against normal cells and an ability to inhibit tumor cell growth and survival at nanomolar concentrations, their mechanisms of action are largely unknown. Initially, a model was proposed whereby HDACi-mediated transactivation of a specific gene or set of genes was responsible for the inhibition of cell cycle progression or induction of apoptosis. Given that HDACs can regulate the activity of a number of nonhistone proteins and that histone acetylation is important for events such as DNA replication and mitosis that do not directly involve gene transcription, it appears that the initial mechanistic model for HDACi may have been too simple. Herein, we provide an update on the transcription-dependent and - independent events that may be important for the anti-tumor activities of HDACi and discuss the use of these compounds in combination with other chemotherapeutic drugs.
Resumo:
Objective-To investigate in vitro transdermal absorption of fentanyl from patches through skin samples obtained from various anatomic regions of dogs. Sample Population-Skin samples from 5 Greyhounds. Procedure-Skin samples from the dogs' thoracic, neck, and groin regions were collected postmortem and frozen. After samples were thawed, circular sections were cut and placed in Franz-type diffusion cells in a water bath (32degreesC). A commercial fentanyl patch, attached to an acetate strip with a circular hole, was applied to each skin sample. Cellulose strips were used as control membranes. Samples of receptor fluid in the diffusion cells were collected at intervals for 48 hours, and fentanyl concentrations were analyzed by use of high-performance liquid chromatography. Results-Mean +/- SD release rate of fentanyl from the patch, defined by its absorption rate through the non-rate-limiting cellulose membrane, was linear during the first 8 hours (2.01 +/- 0.05 pg/cm(2) of cellulose membrane/h) and then decreased. Fentanyl passed through skin from the groin region at a faster rate and with a significantly shorter lag time, compared with findings in neck or thoracic skin samples. Conclusions and Clinical Relevance-In vitro, fentanyl from a patch was absorbed more quickly and to a greater extent through skin collected from the groin region of dogs, compared with skin samples from the thoracic and neck regions. Placement of fentanyl patches in the groin region of dogs may decrease the lag time to achieve analgesia perioperatively; however, in vivo studies are necessary to confirm these findings.
Resumo:
The cyclotides are a family of head-to-tail cyclized peptides that display exceptionally high stability and a range of biological activities. Acyclic permutants that contain a break in the circular backbone have been reported to be devoid of the haemolytic activity of the prototypic cyclotide kalata B1, but the potential role of the charges at the introduced termini in this loss of membraneolytic activity has not been fully determined. In this study, acyclic permutants of kalata B1 with capped N- and G termini were synthesized and found to adopt a native fold. These variants were observed to cause no measurable lysis of erythrocytes, strengthening the connection between backbone cyclization and haemolytic activity. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
A pilot study of tree rings in a modern mangrove tree (Rhizophora apiculata) from Leizhou Peninsula, northern South China Sea shows that ( 1) the tree-rings are annual; ( 2) the ring widths decrease; and ( 3) their alpha-cellulose delta(13)C values increase from 1982 to 1999 AD, consistent with the trends of annual sea level, salinity and sea surface temperatures in the same period. We propose that such changes were caused by increasingly longer duration of waterlogging in response to sea-level rise. If this is the case, alpha-cellulose delta(13)C in mangrove tree rings can be used as a potential indicator of past sea level fluctuations.
Resumo:
In humans, a polymorphic gene encodes the drug-metabolizing enzyme NATI (arylamine N-acetyltransferase Type 1), which is widely expressed throughout the body. While the protein-coding region of NATI is contained within a single exon, examination of the human EST (expressed sequence tag) database at the NCBI revealed the presence of nine separate exons, eight of which were located in the 5'non-coding region of NATI. Differential splicing produced at least eight unique mRNA isoforms that could be grouped according to the location of the first exon, which suggested that NATI expression occurs from three alternative promoters. Using RT (reverse transcriptase)-PCR, we identified one major transcript in various epithelial cells derived from different tissues. In contrast, multiple transcripts were observed in blood-derived cell lines (CEM, THP-1 and Jurkat), with a novel variant, not identified in the EST database, found in CEM cells only. The major splice variant increased gene expression 9-11-fold in a luciferase reporter assay, while the other isoforrns were similar or slightly greater than the control. We examined the upstream region of the most active splice variant in a promoter-reporter assay, and isolated a 257 bp sequence that produced maximal promoter activity. This sequence lacked a TATA box, but contained a consensus Sp1 site and a CAAT box, as well as several other putative transcription-factor-binding sites. Cell-specific expression of the different NATI transcripts may contribute to the variation in NATI activity in vivo.
Resumo:
Modification of cell wall components such as cellulose, hemicellulose and pectin plays an important role in cell expansion. Cell expansion is known to be diminished by cations but it is unknown if this results from cations reacting with pectin or other cell wall components. Autolysis of cell wall material purified from bean root (Phaseolus vulgaris L.) occurred optimally at pH 5.0 and released mainly neutral sugars but very little uronic acid. Autolytic release of neutral sugars and uronic acid was decreased when cell wall material was loaded with Ca, Cu, Sr, Zn, Al or La cations. Results were also extended to a metal-pectate model system, which behaved similarly to cell walls and these cations also inhibited the enzymatic degradation by added polygalacturonase (EC 3.2.1.15). The extent of sugar release from cation-loaded cell wall material and pectate gels was related to the degree of cation saturation of the substrate, but not to the type of cation. The binding strength of the cations was assessed by their influence on the buffer capacity of the cell wall and pectate. The strongly bound cations (Cu, Al or La) resulted in higher cation saturation of the substrate and decreased enzymatic degradability than the weakly held cations (Ca, Sr and Zn). The results indicate that the junction zones between pectin molecules can peel open with weakly held cations, allowing polygalacturonase to cleave the hairy region of pectin, while strongly bound cations or high concentrations of cations force the junction zone closed, minimising enzymatic attack on the pectin backbone. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
A modified UNIQUAC model has been extended to describe and predict the equilibrium relative humidity and moisture content for wood. The method is validated over a range of moisture content from oven-dried state to fiber saturation point, and over a temperature range of 20-70 degrees C. Adjustable parameters and binary interaction parameters of the UNIQUAC model were estimated from experimental data for Caribbean pine and Hoop pine as well as data available in the literature. The two group-interaction parameters for the wood-moisture system were consistent with using function group contributions for H2O, -OH and -CHO. The result reconfirms that the main contributors to water adsorption in cell walls are the hydroxyl groups of the carbohydrates in cellulose and hemicelluloses. This provides some physical insight into the intermolecular force and energy between bound water and the wood material. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
There is interest in the use of sugar cane waste biomass for electricity cogeneration, by integrated gasification combined cycle (IGCC) processes. This paper describes one aspect of an overall investigation into the reactivity of cane wastes under pressurized IGGC conditions, for input into process design. There is currently a gap in understanding the morphological transformations experienced by cane waste biomass undergoing conversion to char during pressurized gasification, which is addressed by this work. Char residuals remaining after pressurized pyrolysis and carbon dioxide gasification were analysed by optical microscope, nitrogen (BET) adsorption analysis, SEM/EDS, TEM/EDS and XPS techniques. The amorphous cane plant silica structures were found to remain physically intact during entrained flow gasification, but chemically altered in the presence of other inorganic species. The resulting crystalline silicates were mesoporous (with surface areas of the order of 20 m(2) g(-1)) and contributed to much of the otherwise limited pore volume present in the residual chars. Coke deposition and intimate blending of the carbonaceous and inorganic species was identified. Progressive sintering of the silicates appeared to trap coke deposits in the pore network. As a result ash residuals showed significant organic contents, even after extensive additional oxidation in air. The implications of the findings are that full conversion of cane trash materials under pressurized IGCC conditions may be significantly hampered by the silica structures inherent in these biomass materials and that further research of the contributing phenomena is recommended.
Resumo:
This thesis is concerned with the effect of polymer structure on miscibility of the three component blends based on poly(lactic acid) (PLA) with using blending techniques. The examination of novel PLA homologues (pre-synthesised poly(a-esters)), including a range of aliphatic and aromatic poly(a-esters) is an important aspect of the work. Because of their structural simplicity and similarity to PLA, they provide an ideal system to study the effect of polyester structures on the miscibility of PLA polymer blends. The miscibility behaviour of the PLA homologues is compared with other aliphatic polyesters (e.g. poly(e-caprolactone) (PCL), poly(hydroxybutyrate hydroxyvalerate) (P(HB-HV)), together with a series of cellulose-based polymers (e.g. cellulose acetate butyrate (CAB)). The work started with the exploration the technique used for preliminary observation of the miscibility of blends referred to as “a rapid screening method” and then the miscibility of binary blends was observed and characterised by percent transmittance together with the Coleman and Painter miscibility approach. However, it was observed that symmetrical structures (e.g. a1(dimethyl), a2(diethyl)) promote the well-packing which restrict their chains from intermingling into poly(L-lactide) (PLLA) chains and leads the blends to be immiscible, whereas, asymmetrical structures (e.g. a4(cyclohexyl)) behave to the contrary. a6(chloromethyl-methyl) should interact well with PLLA because of the polar group of chloride to form interactions, but it does not. It is difficult to disrupt the helical structure of PLLA. PLA were immiscible with PCL, P(HB-HV), or compatibiliser (e.g. G40, LLA-co-PCL), but miscible with CAB which is a hydrogen-bonded polymer. However, these binary blends provided a useful indication for the exploration the novel three component blends. In summary, the miscibility of the three-component blends are miscible even if only two polymers are miscible. This is the benefit for doing the three components blend in this thesis, which is not an attempt to produce a theoretical explanation for the miscibility of three components blend system.
Resumo:
C-terminal acylation of Lys(37) with myristic (MYR; tetradecanoic acid), palmitic (PAL; hexadecanoic acid) and stearic (octadecanoic acid) fatty acids with or without N-terminal acetylation was employed to develop long-acting analogues of the glucoregulatory hormone, glucose-dependent insulinotropic polypeptide (GIP). All GIP analogues exhibited resistance to dipeptidylpeptidase-IV (DPP-IV) and significantly improved in vitro cAMP production and insulin secretion. Administration of GIP analogues to ob/ob mice significantly lowered plasma glucose-GIP(Lys(37)MYR), N-AcGIP(Lys(37)MYR) and GIP(Lys(37)PAL) increased plasma insulin concentrations. GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) elicited protracted glucose-lowering effects when administered 24h prior to an intraperitoneal glucose load. Daily administration of GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) to ob/ob mice for 24 days decreased glucose and significantly improved plasma insulin, glucose tolerance and beta-cell glucose responsiveness. Insulin sensitivity, pancreatic insulin content and triglyceride levels were not changed. These data demonstrate that C-terminal acylation particularly with myristic acid provides a class of stable, longer-acting forms of GIP for further evaluation in diabetes therapy.