928 resultados para Cellular Labeling
Resumo:
Cyclic nucleotide-gated (CNG) channels are a family of ion channels activated by the binding of cyclic nucleotides. Endogenous channels have been used to measure cyclic nucleotide signals in photoreceptor outer segments and olfactory cilia for decades. Here we have investigated the subcellular localization of cGMP signals by monitoring CNG channel activity in response to agonists that activate either particulate or soluble guanylyl cyclase. CNG channels were heterologously expressed in either human embryonic kidney (HEK)-293 cells that stably overexpress a particulate guanylyl cyclase (HEK-NPRA cells), or cultured vascular smooth muscle cells (VSMCs). Atrial natriuretic peptide (ANP) was used to activate the particulate guanylyl cyclase and the nitric oxide donor S-nitroso-n-acetylpenicillamine (SNAP) was used to activate the soluble guanylyl cyclase. CNG channel activity was monitored by measuring Ca2+ or Mn2+ influx through the channels using the fluorescent dye, fura-2. We found that in HEK-NPRA cells, ANP-induced increases in cGMP levels activated CNG channels in a dose-dependent manner (0.05-10 nM), whereas SNAP (0.01-100 microM) induced increases in cGMP levels triggered little or no activation of CNG channels (P < 0.01). After pretreatment with 100 microM 3-isobutyl-1-methylxanthine (IBMX), a nonspecific phosphodiesterase inhibitor, ANP-induced Mn2+ influx through CNG channels was significantly enhanced, while SNAP-induced Mn2+ influx remained small. In contrast, we found that in the presence of IBMX, both 1 nM ANP and 100 microM SNAP triggered similar increases in total cGMP levels. We next sought to determine if cGMP signals are compartmentalized in VSMCs, which endogenously express particulate and soluble guanylyl cyclase. We found that 10 nM ANP induced activation of CNG channels more readily than 100 muM SNAP; whereas 100 microM SNAP triggered higher levels of total cellular cGMP accumulation. These results suggest that cGMP signals are spatially segregated within cells, and that the functional compartmentalization of cGMP signals may underlie the unique actions of ANP and nitric oxide.
Resumo:
Our recent studies have shown that the FoxM1B transcription factor is overexpressed in human glioma tissues and that the level of its expression correlates directly with glioma grade. However, whether FoxM1B plays a role in the early development of glioma (i.e., in transformation) is unknown. In this study, we found that the FoxM1B molecule causes cellular transformation and tumor formation in normal human astrocytes (NHA) immortalized by p53 and pRB inhibition. Moreover, brain tumors that arose from intracranial injection of FoxM1B-expressing immortalized NHAs displayed glioblastoma multiforme (GBM) phenotypes, suggesting that FoxM1B overexpression in immortalized NHAs not only transforms the cells but also leads to GBM formation. Mechanistically, our results showed that overexpression of FoxM1B upregulated NEDD4-1, an E3 ligase that mediates the degradation and downregulation of phosphatase and tensin homologue (PTEN) in multiple cell lines. Decreased PTEN in turn resulted in the hyperactivation of Akt, which led to phosphorylation and cytoplasmic retention of FoxO3a. Blocking Akt activation with phosphoinositide 3-kinase/Akt inhibitors inhibited the FoxM1B-induced transformation of immortalized NHAs. Furthermore, overexpression of FoxM1B in immortalized NHAs increased the expression of survivin, cyclin D1, and cyclin E, which are important molecules for tumor growth. Collectively, these results indicate that overexpression of FoxM1B, in cooperation with p53 and pRB inhibition in NHA cells, promotes astrocyte transformation and GBM formation through multiple mechanisms.
Resumo:
In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations.
Resumo:
Measurement of perfusion in longitudinal studies allows for the assessment of tissue integrity and the detection of subtle pathologies. In this work, the feasibility of measuring brain perfusion in rats with high spatial resolution using arterial spin labeling is reported. A flow-sensitive alternating recovery sequence, coupled with a balanced gradient fast imaging with steady-state precession readout section was used to minimize ghosting and geometric distortions, while achieving high signal-to-noise ratio. The quantitative imaging of perfusion using a single subtraction method was implemented to address the effects of variable transit delays between the labeling of spins and their arrival at the imaging slice. Studies in six rats at 7 T showed good perfusion contrast with minimal geometric distortion. The measured blood flow values of 152.5+/-6.3 ml/100 g per minute in gray matter and 72.3+/-14.0 ml/100 g per minute in white matter are in good agreement with previously reported values based on autoradiography, considered to be the gold standard.
Resumo:
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.
Resumo:
Operant conditioning is a ubiquitous but mechanistically poorly understood form of associative learning in which an animal learns the consequences of its behavior. Using a single-cell analog of operant conditioning in neuron B51 of Aplysia, we examined second-messenger pathways engaged by activity and reward and how they may provide a biochemical association underlying operant learning. Conditioning was blocked by Rp-cAMP, a peptide inhibitor of PKA, a PKC inhibitor, and by expressing a dominant-negative isoform of Ca2+-dependent PKC (apl-I). Thus, both PKA and PKC were necessary for operant conditioning. Injection of cAMP into B51 mimicked the effects of operant conditioning. Activation of PKC also mimicked conditioning but was dependent on both cAMP and PKA, suggesting that PKC acted at some point upstream of PKA activation. Our results demonstrate how these molecules can interact to mediate operant conditioning in an individual neuron important for the expression of the conditioned behavior.
Resumo:
The development of the brain and its underlying circuitry is dependent on the formation of trillions of chemical synapses, which are highly specialized contacts that regulate the flow of information from one neuron to the next. It is through these synaptic connections that neurons wire together into networks capable of performing specific tasks, and activity-dependent changes in their structural and physiological state is one way that the brain is thought to adapt and store information. At the ultrastructural level, developmental and activity-dependent changes in the size and shape of dendritic spines have been well documented, and it is widely believed that structural changes in spines are a hallmark sign of synapse maturation and alteration of synaptic physiology. While changes in spine structure have been studied extensively, changes in one of its most prominent components, the postsynaptic density (PSD), have largely evaded observation. The PSD is a protein-rich organelle on the cytoplasmic side of the postsynaptic membrane, where it sits in direct opposition to the presynaptic terminal. The PSD functions both to cluster neurotransmitter receptors at the cell surface as well as organize the intracellular signaling molecules responsible for transducing extracellular signals to the postsynaptic cell. Much is known about the chemical composition of the PSD, but the structural arrangement of its molecular components is not well documented. Adding to the difficulty of understanding such a complex mass of protein machinery is the fact that its protein composition is known to change in response to synaptic activity, meaning that its structure is plastic and no two PSDs are identical. Here, immuno-gold labeling and electron tomography of PSDs isolated throughout development was used to track changes in both the structure and molecular composition of the PSD. State-of-the-art cryo-electron tomography was used to study the fine structure of the PSD during development, and provides an unprecedented glimpse into its molecular architecture in an un-fixed, unstained and hydrated state. Through this analysis, large structural and compositional changes are apparent and suggest a model by which the PSD is first assembled as a mesh-like lattice of proteins that function as support for the later recruitment of various PSD components. Spatial analysis of the recruitment of proteins into the PSD demonstrated that its assembly has an underlying order.
Resumo:
Neuromodulation is essential to many functions of the nervous system. In the simple gastropod mollusk Aplysia californica, neuromodulation of the circuits for the defensive withdrawal reflexes has been associated with several forms of learning. In the present work, the neurotransmitters and neural circuitry which contribute to the modulation of the tail-siphon withdrawal reflex were examined.^ A recently-identified neuropeptide transmitter, buccalin A was found to modulate the biophysical properties of the sensory neurons that mediate the reflex. The actions of buccalin A on the sensory neurons were compared with those of the well-characterized modulatory transmitter serotonin, and convergence and divergence in the actions of these two transmitters were evaluated. Buccalin A dramatically increased the excitability of sensory neurons and occluded further enhancement of excitability by serotonin. Buccalin A produced no significant change in spike duration, and it did not block serotonin-induced spike broadening. Voltage-clamp analysis revealed the currents that may be involved in the effects on spike duration and excitability. Buccalin A decreased an outward current similar to the S-K$\sp+$ current (I$\sb{\rm K,S}$). Buccalin A appeared to occlude further modulation of I$\sb{\rm K,S}$ by serotonin, but did not block serotonin-induced modulation of the voltage-dependent delayed rectifier K$\sp+$ current (I$\sb{\rm K,V}$). These results suggest that buccalin A converges on some, but not all, of the same subcellular modulatory pathways as serotonin.^ In order to begin to understand neuromodulation in a more physiological context for the tail-siphon withdrawal reflex, the modulatory circuitry for the tail-withdrawal circuit was examined. Mechanoafferent neurons in the J cluster of the cerebral ganglion were identified as elements of a modulatory circuit for the reflex. Excitatory and inhibitory connections were observed between the J cells and the pleural sensory neurons, the tail motor neurons, and several classes of interneurons for the tail-siphon withdrawal circuit. The J cells produced both fast and slow PSPs in these neurons. Of particular interest was the ability of the J cells to produce slow EPSPs in the pleural sensory neurons. These slow EPSPs were associated with an increase in the excitability of the sensory neurons. The J cells appear to mediate both sensory and modulatory inputs to the circuit for the tail-siphon withdrawal reflex from the anterior part of the animal. ^
Resumo:
The origin and structure of P55$\sp{\rm gag},$ a gag encoded polyprotein lacking the nucleocapsid protein, NCp10, have been explored. Evidence shows that P55$\sp{\rm gag}$ is formed by non-viral proteolytic cleavage of the Moloney murine leukemia virus (MoMuLV)gag precursor protein, Pr65$\sp{\rm gag}.$ P55$\sp{\rm gag}$ is produced in cells infected by a viral protease deletion mutant and by a recombinant murine sarcoma virus known to lack the protease gene, implying that a cellular protease is responsible for the cleavage. Structural and immunological studies show that the protein cleavage site is upstream of the CAp30-NCp10 viral proteolytic junction, implying that P55$\sp{\rm gag}$ lacks the carboxy-terminal residues of CAp30. During the course of studying P55$\sp{\rm gag},$ another protein was discovered, which I named nucleocapsid-related protein(NCRP). NCRP possesses the portion of CAp30 that is lacking in P55$\sp{\rm gag}.$ NCRP possesses antigenic epitopes present in CAp30 and NCp10. NCRP was observed in virus lysates and in nuclear lysates of MoMuLV infected cells; it was not detected in the cytoplasmic fractions of MoMuLV infected cells. Our results indicated that NCRP originates from Pr65$\sp{\rm gag},$ resulting from the same cellular proteolytic cleavage event that produces the viral cellular protein P55$\sp{\rm gag}.$ P55$\sp{\rm gag}$- and NCRP-like proteins also were observed in AKV murine leukemia virus (AKV MuLV) and feline leukemia virus (FeLV) infected cells and in their respective virus particles. The site of cleavage that yields P55$\sp{\rm gag}$ and NCRP is within the carboxy terminus of CAp30, likely within a motif highly conserved among mammalian type C retroviruses. This new motif, called the capsid conserved motif (CCM), overlaps a region containing both a possible bipartite nuclear targeting sequence and a region homologous with the U1 small nuclear ribonucleoprotein 70-kD protein. This domain, when intact, may act as a nuclear targeting sequence for the gag precursor proteins Pr65$\sp{\rm gag}$ and CAp30. Nuclei of cells infected with MoMuLV were examined for the presence of gag proteins. Both Pr65$\sp{\rm gag}$ and CAp30 were detected in the nuclear fraction of MoMuLV, AKV MuLV and FeLV infected cells. P55$\sp{\rm gag}$ was never detected in the nucleus of MoMuLV, AKV MuLV and FeLV infected cells or in their respective virus particles. I propose that NCRP may be involved in sequestering viral genomic RNA for the purposes of encapsidation and intracellular viral genomic RNA dimerization. ^
Resumo:
The goal of this study was to investigate the cellular and molecular mechanisms by which glutathione (GSH) is involved in the process of apoptosis induced by cisplatin [cis-diamminedichloroplatinum(II), cis-DDP] in the HL60 human promyelocytic leukemia cell line. The data show that during the onset or induction of apoptosis, GSH levels in cisplatin-treated cells increased 50% compared to control cells. The increase in intracellular GSH was associated with enhanced expression of γ-glutamylcysteine synthetase (γ-GCS), the enzyme that catalyzes the rate- limiting step in the biosynthesis of glutathione. After depletion of intracellular GSH with D,L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of γ-GCS, biochemical and morphological analysis revealed that the mechanism of cell death had switched from apoptosis to necrosis. In contrast, when intracellular GSH was elevated by exposure of cells to a GSH-ethyl-ester and then treatment with cisplatin, no change in the induction and kinetics of apoptosis were observed. However, when cells were exposed to cisplatin before intracellular GSH levels were increased, apoptosis was observed to occur 6 hours earlier compared to cells without GSH elevation. To further examine the molecular aspects of these effects of GSH on the apoptotic process, changes in the expression of bcl-2 and bax, were investigated in cells with depleted and elevated GSH. Using reverse transcription polymerase chain reaction, no significant change in the expression of bcl-2 gene transcripts was observed in cells in either the GSH depleted or elevated state; however, a 75% reduction in GSH resulted in a 40% decrease in the expression of bax gene transcripts. In contrast, a 6-fold increase in GSH increased the expression of bax by 3-fold relative to controls. Similar results were obtained for bax gene expression and protein synthesis by northern analysis and immunoprecipitation, respectively. These results suggest that GSH serves a dual role in the apoptotic process. The first role which is indirect, involves the protection of the cell from extensive damage following exposure to a specific toxicant so as to prevent death by necrosis, possibly by interacting with the DNA damaging agent and/or its active metabolites. The second role involves a direct involvement of GSH in the apoptotic process that includes upregulation of bax expression. ^
Resumo:
Pathogenic bacteria secrete pore-forming toxins that permeabilize the plasma membrane of host cells. Nucleated cells possess protective mechanisms that repair toxin-damaged plasmalemma. Currently two putative repair scenarios are debated: either the isolation of the damaged membrane regions and their subsequent expulsion as microvesicles (shedding) or lysosome-dependent repair might allow the cell to rid itself of its toxic cargo and prevent lysis. Here we provide evidence that both mechanisms operate in tandem but fulfill diverse cellular needs. The prevalence of the repair strategy varies between cell types and is guided by the severity and the localization of the initial toxin-induced damage, by the morphology of a cell and, most important, by the incidence of the secondary mechanical damage. The surgically precise action of microvesicle shedding is best suited for the instant elimination of individual toxin pores, whereas lysosomal repair is indispensable for mending of self-inflicted mechanical injuries following initial plasmalemmal permeabilization by bacterial toxins. Our study provides new insights into the functioning of non-immune cellular defenses against bacterial pathogens.
Resumo:
Prematurely born babies are often treated with glucocorticoids. We studied the consequences of an early postnatal and short dexamethasone treatment (0.1-0.01 microg/g, days 1-4) on lung development in rats, focusing on its influence on peaks of cell proliferation around day 4 and of programmed cell death at days 19-21. By morphological criteria, we observed a dexamethasone-induced premature maturation of the septa (day 4), followed by a transient septal immatureness and delayed alveolarization leading to complete rescue of the structural changes. The numbers of proliferating (anti-Ki67) and dying cells (TdT-mediated dUTP nick end labeling) were determined and compared with controls. In dexamethasone-treated animals, both the peak of cell proliferation and the peak of programmed cell death were reduced to baseline, whereas the expression of tissue transglutaminase (transglutaminase-C), another marker for postnatal lung maturation, was not significantly altered. We hypothesize that a short neonatal course of dexamethasone leads to severe but transient structural changes of the lung parenchyma and influences the balance between cell proliferation and cell death even in later stages of lung maturation.