885 resultados para Cell survival assay
Resumo:
Mutations in the p53 gene are implicated in the pathogenesis of half of all human tumors. We have developed a simple functional assay for p53 mutation in which human p53 expressed in Saccharomyces cerevisiae activates transcription of the ADE2 gene. Consequently, yeast colonies containing wild-type p53 are white and colonies containing mutant p53 are red. Since this assay tests the critical biological function of p53, it can distinguish inactivating mutations from functionally silent mutations. By combining this approach with gap repair techniques in which unpurified p53 reverse transcription-PCR products are cloned by homologous recombination in vivo it is possible to screen large numbers of samples and multiple clones per sample for biologically important mutations. This means that mutations can be detected in tumor specimens contaminated with large amounts of normal tissue. In addition, the assay detects temperature-sensitive mutants, which give pink colonies. We show here that this form of p53 functional assay can be used rapidly to detect germline mutations in blood samples, somatic mutations in tumors, and mutations in cell lines.
Resumo:
The embryonic period of motoneuron programmed cell death (PCD) is marked by transient motor axon branching, but the role of neuromuscular synapses in regulating motoneuron number and axonal branching is not known. Here, we test whether neuromuscular synapses are required for the quantitative association between reduced skeletal muscle contraction, increased motor neurite branching, and increased motoneuron survival. We achieved this by comparing agrin and rapsyn mutant mice that lack acetylcholine receptor (AChR) clusters. There were significant reductions in nerve-evoked skeletal muscle contraction, increases in intramuscular axonal branching, and increases in spinal motoneuron survival in agrin and rapsyn mutant mice compared with their wild-type littermates at embryonic day 18.5 (E18.5). The maximum nerve-evoked skeletal muscle contraction was reduced a further 17% in agrin mutants than in rapsyn mutants. This correlated to an increase in motor axon branch extension and number that was 38% more in agrin mutants than in rapsyn mutants. This suggests that specializations of the neuromuscular synapse that ensure efficient synaptic transmission and muscle contraction are also vital mediators of motor axon branching. However, these increases in motor axon branching did not correlate with increases in motoneuron survival when comparing agrin and rapsyn mutants. Thus, agrin-induced synaptic specializations are required for skeletal muscle to effectively control motoneuron numbers during embryonic development. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The aim of this study was to apply multifailure survival methods to analyze time to multiple occurrences of basal cell carcinoma (BCC). Data from 4.5 years of follow-up in a randomized controlled trial, the Nambour Skin Cancer Prevention Trial (1992-1996), to evaluate skin cancer prevention were used to assess the influence of sunscreen application on the time to first BCC and the time to subsequent BCCs. Three different approaches of time to ordered multiple events were applied and compared: the Andersen-Gill, Wei-Lin-Weissfeld, and Prentice-Williams-Peterson models. Robust variance estimation approaches were used for all multifailure survival models. Sunscreen treatment was not associated with time to first occurrence of a BCC (hazard ratio = 1.04, 95% confidence interval: 0.79, 1.45). Time to subsequent BCC tumors using the Andersen-Gill model resulted in a lower estimated hazard among the daily sunscreen application group, although statistical significance was not reached (hazard ratio = 0.82, 95% confidence interval: 0.59, 1.15). Similarly, both the Wei-Lin-Weissfeld marginal-hazards and the Prentice-Williams-Peterson gap-time models revealed trends toward a lower risk of subsequent BCC tumors among the sunscreen intervention group. These results demonstrate the importance of conducting multiple-event analysis for recurring events, as risk factors for a single event may differ from those where repeated events are considered.
Resumo:
Purpose: The effectiveness of synchronous carboplatin, etoposide, and radiation therapy in improving survival was evaluated by comparison of a matched set of historic control subjects with patients treated in a prospective Phase II study that used synchronous chemotherapy and radiation and adjuvant chemotherapy. Patients and Methods: Patients were included in the analysis if they had disease localized to the primary site and nodes, and they were required to have at least one of the following high-risk features: recurrence after initial therapy, involved nodes, primary size greater than 1 cm, or gross residual disease after surgery. All patients who received chemotherapy were treated in a standardized fashion as part of a Phase II study (Trans-Tasman Radiation Oncology Group TROG 96:07) from 1997 to 2001. Radiation was delivered to the primary site and nodes to a dose of 50 Gy in 25 fractions over 5 weeks, and synchronous carboplatin (AUC 4.5) and etoposide, 80 mg/m(2) i.v. on Days 1 to 3, were given in Weeks 1, 4, 7, and 10. The historic group represents a single institution's experience from 1988 to 1996 and was treated with surgery and radiation alone, and patients were included if they fulfilled the eligibility criteria of TROG 96:07. Patients with occult cutaneous disease were not included for the purpose of this analysis. Because of imbalances in the prognostic variables between the two treatment groups, comparisons were made by application of Cox's proportional hazard modeling. Overall survival, disease-specific survival, locoregional control, and distant control were used as endpoints for the study. Results: Of the 102 patients who had high-risk Stage I and II disease, 40 were treated with chemotherapy (TROG 96:07) and 62 were treated without chemotherapy (historic control subjects). When Cox's proportional hazards modeling was applied, the only significant factors for overall survival were recurrent disease, age, and the presence of residual disease. For disease-specific survival, recurrent disease was the only significant factor. Primary site on the lower limb had an adverse effect on locoregional control. For distant control, the only significant factor was residual disease. Conclusions: The multivariate analysis suggests chemotherapy has no effect on survival, but because of the wide confidence limits, a chemotherapy effect cannot be excluded. A study of this size is inadequately powered to detect small improvements in survival, and a larger randomized study remains the only way to truly confirm whether chemotherapy improves the results in high-risk MCC. (c) 2006 Elsevier Inc.
Resumo:
Mast cell tumours (MCTs) are relatively common tumours of cats, and are the second most common cutaneous tumours in cats in the USA. While the primary splenic form of the disease is far less common, it is usually associated with more severe clinical signs. Signalment, clinical and survival characteristics of mast cell neoplasia were characterised in 41 cats. The most common tumour location was cutaneous/ subcutaneous head and trunk. Stage la was the most common tumour stage at first diagnosis (n = 20), followed by stage 4 (both stage 4a and stage 4b; n = 10). Of 22 cats that underwent excisional biopsy, mast cell neoplasia recurred in four cats during the study period. Three of the 41 cats presented with simultaneous cutaneous and either splenic or lymph node tumours. A comparison between cats with only cutaneous tumours (n = 30) and those with tumours involving the spleen or lymph nodes (n = 11) showed longer survival times for the cutaneous-only group (P = 0.031). Twelve of the 41 cats died of mast cell neoplasia during the study period. When a subgroup of cats with only cutaneous tumours (no lymph node or visceral involvement) were divided according to whether there were multiple (five or more) tumours (n = 6) or a single tumour (n = 19), cats with single tumours survived longer than those with multiple tumours (P = 0.001). Solitary cutaneous feline MCTs without spread to the lymph nodes usually manifest as benign disease with a relatively protracted course. However, multiple cutaneous tumours, recurrent tumours and primary splenic disease should receive a guarded prognosis due to the relatively short median survival times associated with these forms of the disease. (C) 2006 ESFM and AAFR Published by Elsevier Ltd. All rights reserved.
Resumo:
Repeated titrations of strains of Newcastle disease virus (NDV) are more conveniently undertaken in cell cultures rather than in embryonated eggs. This is relatively easy with mesogenic and velogenic strains that are cytopathic to various cell lines, but is difficult with avirulent Australian isolates that are poorly cytopathic. Strain V4 for example has been shown to be pathogenic iin vitro only to of chicken embryo liver cells. Strain 1-2 was reported to produce cytopathic effect (CPE) on chicken embryo kidney (CEK) cells. The present studies confirmed this observation and developed a quantal assay. CEK cells infected with strain 1-2 developed CPE characterized by degeneration, rounding, granularity and vacuolation, and the formation of synctia. End points were readily established by microscopic examination of fixed and stained cells. In virus infectivity studies on strain 1-2, where multiple titrations are required and where large numbers of samples are used, titration using CEK cell grown in microtitre plates is recommended. Such studies may not be feasible in embryonated eggs.
Resumo:
The adult human intervertebral disc (IVD) is normally avascular. Changes to the extracellular matrix in degenerative disc disease may promote vascularisation and subsequently alter cell nutrition and disc homeostasis. This study examines the influence of cell density and the presence of glucose and serum on the proliferation and survival of IVD cells in 3D culture. Bovine nucleus pulposus (NP) cells were seeded at a range of cell densities (1.25 × 10(5)-10(6) cells/mL) and cultured in alginate beads under standard culture conditions (with 3.15 g/L glucose and 10 % serum), or without glucose and/or 20% serum. Cell proliferation, apoptosis and cell senescence were examined after 8 days in culture. Under standard culture conditions, NP cell proliferation and cluster formation was inversely related to cell seeding density, whilst the number of apoptotic cells and enucleated "ghost" cells was positively correlated to cell seeding density. Increasing serum levels from 10% to 20% was associated with increased cluster size and also an increased prevalence of apoptotic cells within clusters. Omitting glucose produced even larger clusters and also more apoptotic and senescent cells. These studies demonstrate that NP cell growth and survival are influenced both by cell density and the availability of serum or nutrients, such as glucose. The observation of clustered, senescent, apoptotic or "ghost" cells in vitro suggests that environmental factors may influence the formation of these phenotypes that have been previously reported in vivo. Hence this study has implications for both our understanding of degenerative disc disease and also cell-based therapy using cells cultured in vitro.
Resumo:
Bone marrow mesenchymal stem cells (MSCs) promote nerve growth and functional recovery in animal models of spinal cord injury (SCI) to varying levels. The authors have tested high-content screening to examine the effects of MSC-conditioned medium (MSC-CM) on neurite outgrowth from the human neuroblastoma cell line SH-SY5Y and from explants of chick dorsal root ganglia (DRG). These analyses were compared to previously published methods that involved hand-tracing individual neurites. Both methods demonstrated that MSC-CM promoted neurite outgrowth. Each showed the proportion of SH-SY5Y cells with neurites increased by ~200% in MSC-CM within 48 h, and the number of neurites/SH-SY5Y cells was significantly increased in MSC-CM compared with control medium. For high-content screening, the analysis was performed within minutes, testing multiple samples of MSC-CM and in each case measuring >15,000 SH-SY5Y cells. In contrast, the manual measurement of neurite outgrowth from >200 SH-SY5Y cells in a single sample of MSC-CM took at least 1 h. High-content analysis provided additional measures of increased neurite branching in MSC-CM compared with control medium. MSC-CM was also found to stimulate neurite outgrowth in DRG explants using either method. The application of the high-content analysis was less well optimized for measuring neurite outgrowth from DRG explants than from SH-SY5Y cells.
Resumo:
Background: Human islet transplantation would offer a less invasive and more physiological alternative than whole pancreas transplantation and insulin injections respectively for the treatment of diabetes mellitus if islet graft survival can be improved. Initial recipient post-transplant insulin independence declines to <10% after 5 years. Factors contributing to graft failure include enzymatic disruption of the islet microenvironment during isolation, diabetogenic effects of immunosuppressants and metabolic stress resulting from slow revascularisation. Aims: To investigate the effect of co-culture in both static (SC) and rotational culture (RC) of BRINBDII beta-cells (Dl1) and human umbilical vein endothelial cells (HUVEC) on Dl1 insulin secretion; and the effect of a thiazolidinedione (TZD) on DII function and HUVEC proliferation. To assess the effect of culture media, SC, RC and a TZD on human islet morphology, insulin secretion and VEGF production. To initiate in vivo protocol development for assessment of revascularisation of human islet grafts. Methods: D11 cells were cultured +/-TZD and co-cultured with HUVEC +/-TZD in SC and RC. Dl1 insulin secretion was induced by static incubation with low glucose (1.67mM), high glucose (l6.7mM: and high glucose with 10mM theophylline (G+T) and determined by ELISA. HUVEC were cultured +/-TZD in SC and RC and proliferation was assessed by ATP luminescence assay and VEGF ELISA. D II and HUVEC morphology was determined by immunocytochemistry. Human islets were cultured in SC and RC in various media +/-TZD. Insulin secretion was determined as above and VEGF production by fluorescence immunocytochemistry (FI) and ELISA. Revascularisation of islet grafts was assessed by vascular corrosion cast and FI. Results: Dll cultures showed significantly increased insulin secretion in response to 16.7mM and G+T over basal; this was enhanced by RC and further improved by adding 10mM TZD. Untreated Dll/HUVEC co-cultures displayed significantly increased insulin secretion in response to 16.7mM and G+T over basal, again enhanced by RC and improved with 10mM TZD. 10mM TZD significantly increased HUVEC proliferation over control. Human islets maintained in medium 199 (mI99) in SC and RC exhibited comparable maintenance of morphology and insulin secretory profiles compared to islets maintained in RPMI, endothelial growth media and dedicated islet medium Miami# I. All cultures showed significantly increased insulin secretion in response to 16.7mM and G+T over basal; this was enhanced by RC and in certain instances further improved by adding 25mM TZD. TZD increased VEGF production and release as determined by ELISA. Post-implant vascular corrosion casts of mouse kidneys analysed by x-ray micro tomography indicates a possible TZD enhancement of microvessel growth via VEGF upregulation. Conclusions: D II /HUVEC co-culture in SC or RC does not alter the morphology of either cell type and supports D 11 function. TZD improves 0 I I and D I I/HUVEC SC and RC co-culture insulin secretion while increasing HUVEC proliferation. Human islet RC supports islet functional viability and structural integrity compared to SC while the addition of TZD occasionally further improves secretagogue induced insulin secretion. Expensive, 'dedicated' islet media showed no advantage over ml99 in terms of maintaining islet morphology or function. TZD upregulates VEGF in islets as shown by ELISA and suggested by x-ray micro tomography analysis of vascular corrosion casts. Maintenance of islets in RC and treatment with TZD prior to transplant may improve the functional viability and revascularisation rate of islet grafts.
Resumo:
Tissue transglutaminase (TG2) has been identified as an important extracellular crosslinking enzyme involved in matrix turnover and in bone differentiation. Here we report a novel cell adhesion/survival mechanism in human osteoblasts (HOB) which requires association of FN bound TG2 with the cell surface heparan sulphates in a transamidase independent manner. This novel pathway not only enhances cell adhesion on FN but also mediates cell adhesion and survival in the presence of integrin competing RGD peptides. We investigate the involvement of cell surface receptors and their intracellular signalling molecules to further explore the pathway mediated by this novel TG-FN heterocomplex. We demonstrate by siRNA silencing the crucial importance of the cell surface heparan sulphate proteoglycans syndecan-2 and syndecan-4 in regulating the compensatory effect of TG-FN on osteoblast cell adhesion and actin cytoskeletal formation in the presence of RGD peptides. By use of immunoprecipitation and inhibitory peptides we show that syndecan-4 interacts with TG2 and demonstrate that syndecan-2 and the a5ß1 integrins, but not a4ß1 function as downstream modulators in this pathway. Using function blocking antibodies, we show activation of a5ß1 occurs by an inside out signalling mechanism involving activation and binding of protein kinase PKCa and phosphorylation of focal adhesion kinase (FAK) at Tyr861 and activation of ERK1/2.
Resumo:
Aims/hypothesis
Intra-retinal extravasation and modification of LDL have been implicated in diabetic retinopathy: autophagy may mediate these effects.
Methods
Immunohistochemistry was used to detect autophagy marker LC3B in human and murine diabetic and non-diabetic retinas. Cultured human retinal capillary pericytes (HRCPs) were treated with in vitro-modified heavily-oxidised glycated LDL (HOG-LDL) vs native LDL (N-LDL) with or without autophagy modulators: green fluorescent protein–LC3 transfection; small interfering RNAs against Beclin-1, c-Jun NH(2)-terminal kinase (JNK) and C/EBP-homologous protein (CHOP); autophagy inhibitor 3-MA (5 mmol/l) and/or caspase inhibitor Z-VAD-fmk (100 μmol/l). Autophagy, cell viability, oxidative stress, endoplasmic reticulum stress, JNK activation, apoptosis and CHOP expression were assessed by western blots, CCK-8 assay and TUNEL assay. Finally, HOG-LDL vs N-LDL were injected intravitreally to STZ-induced diabetic vs control rats (yielding 50 and 200 mg protein/l intravitreal concentration) and, after 7 days, retinas were analysed for ER stress, autophagy and apoptosis.
Results
Intra-retinal autophagy (LC3B staining) was increased in diabetic vs non-diabetic humans and mice. In HRCPs, 50 mg/l HOG-LDL elicited autophagy without altering cell viability, and inhibition of autophagy decreased survival. At 100–200 mg/l, HOG-LDL caused significant cell death, and inhibition of either autophagy or apoptosis improved survival. Further, 25–200 mg/l HOG-LDL dose-dependently induced oxidative and ER stress. JNK activation was implicated in autophagy but not in apoptosis. In diabetic rat retina, 50 mg/l intravitreal HOG-LDL elicited autophagy and ER stress but not apoptosis; 200 mg/l elicited greater ER stress and apoptosis.
Conclusions
Autophagy has a dual role in diabetic retinopathy: under mild stress (50 mg/l HOG-LDL) it is protective; under more severe stress (200 mg/l HOG-LDL) it promotes cell death.
Resumo:
Thesis (Master's)--University of Washington, 2016-06