977 resultados para Cdna Array
Resumo:
Transmembrane mucins are glycoproteins involved in barrier function in epithelial tissues. To identify novel transmembrane mucin genes, we performed a tblastn search of the GenBank(TM) EST data bases with a serine/ threonine-rich search string, and a rodent gene expressed in bone marrow was identified. We determined the cDNA sequence of the human orthologue of this gene, MUC13, which localizes to chromosome band 3q13.3 and generates 3.2-kilobase pair transcripts encoding a 512-amino acid protein comprised of an N-terminal mucin repeat domain, three epidermal growth factor-like sequences, a SEA module, a transmembrane domain, and a cytoplasmic tail (GenBank(TM) accession no. AF286113), MUC13 mRNA is expressed most highly in the large intestine and trachea, and at moderate levels in the kidney, small intestine, appendix, and stomach, In situ hybridization in murine tissues revealed expression in intestinal epithelial and lymphoid cells. Immunohistochemistry demonstrated the human MUC13 protein on the apical membrane of both columnar and goblet cells in the gastrointestinal tract, as well as within goblet cell thecae, indicative of secretion in addition to presence on the cell surface. MUC13 is cleaved, and the beta -subunit containing the cytoplasmic tail undergoes homodimerization, Including MUC13, there are at least five cell surface mucins expressed in the gastrointestinal tract.
Resumo:
High molecular weight mucins represent a unique challenge as tumor markers by virtue of their complex array of epitopes, The list is dominated by the high molecular weight mucins MUC1, CEA and CA125. While the currently accepted role for these tumor markers is in the prediction and detection of relapse, it is possible that their sensitivity and specificity can be improved. Although immunoassays detecting the tumor marker MUC1 are both sensitive and specific for predicting relapse in breast cancer, so far they are not in widespread use in the follow-up of this disease. Are there new combinations of conventional reagents that could improve assay sensitivity, or should we be looking for more radical changes in assay design incorporating combinatorial technology? Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
The Eph family (of receptor tyrosine kinases plays a crucial role during development and is implicated in oncogenesis. Using a partial cDNA clone of an Eph-related kinase (Esk) we isolated the complete coding region of a gene which we show to be murine EphA1 by both structural and functional criteria. The chromosomal localization is shown to be syntenic to hEphA1 and the genomic organization also shows distinct features found in the hEphA1 gene. Functionally, in keeping with findings for the human homologue, both soluble recombinant and native mEphA1 show preferential binding to ephrin A1. However, we also observed significant binding to other A-type ligands as has been observed for other Eph receptors. We analysed the expression of mEphA1 mRNA by in situ hybridization on tissue sections. mEphA1 was expressed in epithelial elements of skin, adult thymus, kidney and adrenal cortex. Taken together with previous Northern blotting data these results suggest that mEphA1 is expressed widely in differentiated epithelial cells.
Resumo:
Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. Human platelet-derived EPF shares amino acid sequence identity with chaperonin 10 (Cpn10), a mitochondrial matrix protein which functions as a molecular chaperone. The striking differences in cellular localization and function of the two proteins suggest differential regulation of production reflecting either alternative transcription of the same gene or transcription from different genes. In mammals and more distantly related genera, there is a large gene family with homology to CPN 10 cDNA, which includes intronless copies of the coding sequence. To determine whether this could represent the gene for EPF, we have screened a mouse genomic library and sequenced representative Cpn10 family members, looking for a functional gene distinct from that of Cpn 10, which could encode EPF. Eight distinct genes were identified. Cpn10 contains introns, while other members are intronless. Six of these appear to be pseudogenes, and the remaining member, Cpn10-rs1, would encode a full-length protein. The 309-bp open reading frame (ORF) is identical to that of mouse Cpn10 cDNA with the exception of three single-base changes, two resulting in amino acid changes. Only one further single nucleotide difference between the Cpn10-rs1 and Cpn10 cDNAs is observed, located in the 3' UTR. Single nucleotide primer extension was applied to discriminate between Cpn10-rs1 and Cpn10 expression. Cpn10, which is ubiquitous, was detected in all tissue samples tested, whereas Cpn10-rs1 was expressed selectively. The pattern was completely coincident with known patterns of EPF activity, strongly suggesting that Cpn10-rs1 does encode EPF. The complete ORF of Cpn10-rs1 was expressed in E. coli. The purified recombinant protein was found to be equipotent with native human platelet-derived EPF in the bioassay for EPF, the rosette inhibition test.
Resumo:
Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The fx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell, Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multivesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of fx mice.
Resumo:
SOX18 is a transcription factor that is transiently expressed in nascent endothelial cells during embryonic development and adult neovascularization. This protein belongs to the SOX family of transcription factors, ih,which are proving to be some of the key regulators of cell-type specification in the vertebrate embryo. Natural mutations in the Sox18 gene have been shown to result to cardiovascular dysfunction, in some cases leading to death. Available evidence thus implicates Sox18 as an important regulator of vascular development, most likely playing a key role in endothelial cell specification. However; the genetic knockout of Sox18 in mice has produced a confounding result that complicates our understanding of the molecular mode of action of the SOX18 protein. We speculate that Sox18 inky act in a redundant fashion with closely related genes such as Sox7 and/or Sox17. (C) 2001, Elsevier Science Inc.
Resumo:
Sox18 encodes a transcription factor known to be important for the development of blood vessels and hair follicles in mice. In order to study the functional conservation of this gene through evolution, we have isolated and characterized Sox18 in chickens. cSox18 shows a high degree of sequence homology to both the mouse and human orthologues, particularly in the high mobility group DNA-binding domain and to a lesser extent in the transcriptional activation domain. A region of unusually high sequence conservation at the C-terminus may represent a further, previously unrecognized functional domain. Both the chicken and human proteins appear to be truncated at the N-terminus relative to mouse SOX18. In situ hybridization analyses showed expression in the developing vasculature and feather follicles, consistent with reported expression in the mouse embryo. In addition, cSox18 mRNA was observed in the retina and claw beds. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The Sox gene family (Sry like HMG box gene) is characterised by a conserved DNA sequence encoding a domain of approximately 80 amino acids which is responsible for sequence specific DNA binding. We initially published the identification and partial cDNA sequence of murine Sox18, a new member of this gene family, isolated from a cardiac cDNA library. This sequence allowed us to classify Sox18 into the F sub-group of Sox proteins, along with Sox7 and Sox17. Recently, we demonstrated that mutations in the Sox18 activation domain underlie cardiovascular and hair follicle defects in the mouse mutation, ragged (Ra) (Pennisi et al., 2000. Mutations in Sox18 underlie cardiovascular and hair follicle defecs in ragged mice. Nat. Genet. 24, 434-437). Ra homozygotes lack vibrissae and coat hairs, have generalised oedema and an accumulation of chyle in the peritoneum. Here we have investigated the genomic sequences encoding Sox18. Screening of a mouse genomic phage library identified four overlapping clones, we sequenced a 3.25 kb XbaI fragment that defined the entire coding region and approximately 1.5 kb of 5' flanking sequences. This identified (i) an additional 91 amino acids upstream of the previously designated methionine start codon in the original cDNA, and (ii);ln intron encoded within the HMG box/DNA binding domain in exactly the same position as that found in the Sox5, -13 and -17 genes. The Sox18 gene encodes a protein of 468 aa. We present evidence that suggests HAF-2, the human HMG-box activating factor-2 protein, is the orthologue of murine Sox18. HAF-2 has been implicated in the regulation of the Human IgH enhancer in a B cell context. Random mutagenesis coupled with GAL4 hybrid analysis in the activation domain between amino acids 252 and 346, of Sox18, implicated the phosphorylation motif, SARS, and the region between amino acid residues 313 and 346 as critical components of Sox18 mediated transactivation. Finally, we examined the expression of Sox18 in multiple adult mouse tissues using RT-PCR. Low-moderate expression was observed in spleen, stomach, kidney, intestine, skeletal muscle and heart. Very abundant expression was detected in lung tissue. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Previously, we reported the presence of dual promoters, referred to as distal (DP) and proximal, with a negative regulatory element between them in the mouse mu -opioid receptor (mor) gene. Here we have identified a positive regulatory element influencing mor DP transcription, which contains multiple consensus binding motifs for Sox factors (sex-determining Sry-like high mobility group box-containing genes). In gel supershift assays, the Sox family member Sox18 bound directly to the multiple Sox consensus binding motifs of the mor DP enhancer. Overexpression of Sox18 cDNA increased luciferase activity regulated by the mor DP, and did so in a Sox18 concentration-dependent manner. In contrast, overexpression of another Sox member, Sox5, triggered no such trans-activation of mor DP-driven luciferase activity or DNA-protein binding activity. These results suggest that Sox18 directly and specifically stimulates mor gene expression, by trans-activating the mor DP enhancer.
Resumo:
We have previously reported successful trans-complementation of defective Kunjin virus genomic RNAs with a range of large lethal deletions in the nonstructural genes NSI, NS3, and NS5 (A. A. Khromykh et al., J. Virol. 74:3253-3263, 2000). In this study we have mapped further the minimal region in the NS5 gene essential for efficient trans-complementation of genome-length RNAs in repBHK cells to the first 316 of the 905 codons. To allow amplification and easy detection of complemented defective RNAs with deletions apparently affecting virus assembly, we have developed a dual replicon complementation system. In this system defective replicon RNAs with a deletion(s) in the nonstructural genes also encoded the puromycin resistance gene (PAC gene) and the reporter gene for beta-galactosidase (beta-Gal). Complementation of these defective replicon RNAs in repBHK cells resulted in expression of PAC and beta-Gal which allowed establishment of cell lines stably producing replicating defective RNAs by selection with puromycin and comparison of replication efficiencies of complemented defective RNAs by beta-Gal assay. Using this system we demonstrated that deletions in the C-terminal 434 codons of NS3 (codons 178 to 611) were complemented for RNA replication, while any deletions in the first 178 codons were not. None of the genome-length RNAs containing deletions in NS3 shown to be complementable for RNA replication produced secreted defective viruses during complementation in repBHK cells. In contrast, structural proteins produced from these complemented defective RNAs were able to package helper replicon RNA. The results define minimal regions in the NS3 and NS5 genes essential for the formation of complementable replication complex and show a requirement of NS3 in cis for virus assembly.
Resumo:
In this article, we draw together aspects of contemporary theories of knowledge (particularly organisational knowledge) and complexity theory to demonstrate how appropriate conceptual rigor enables both the role of government and the directions of policy development in knowledge-based economies to be identified. Specifically we ask, what is the role of government in helping shape the knowledge society of the future? We argue that knowledge policy regimes must go beyond the modes of policy analysis currently used in innovation, information and technology policy because they are based in an industrial rather than post-industrial analytical framework. We also argue that if we are to develop knowledge-based economies, more encompassing images of the future than currently obtain in policy discourse are required. We therefore seek to stimulate and provoke an array of lines of thought about government and policy for such economies. Our objective is to focus on ideas more than argument and persuasion.
Resumo:
Transgenic tobacco plants expressing a phenylalanine ammonia-lyase cDNA (ShPAL), isolated from Stylosanthes humilis, under the control of the 35S promoter of the cauliflower mosaic virus were produced to test the effect of high level PAL expression on disease resistance. The transgenic plants showed up to eightfold PAL activity and were slowed in growth and flowering relative to non-transgenic controls which have segregated out the transgene. The expression of the ShPAL transgene and elevated PAL levels were correlated and stably inherited. In T-1 and T-2 tobacco plants with increased PAL activity, lesion expansion was significantly reduced by up to 55% on stems inoculated with the Oomycete pathogen Phytophthora parasitica pv. nicotianae, Lesion area was significantly reduced by up to 50% on leaves inoculated with the fungal pathogen Cercospora nicotianae. This study provides further evidence that PAL has a role in plant defence. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
An equivalent unit cell waveguide approach (WGA) is described to study the behavior of a multilayer reflect array of variable-size patches/dipoles, The approach considers normal incidence of a plane wave on an infinite periodic array of identical radiating elements and introduces an equivalent unit cell waveguide to obtain the reflection coefficient. A field matching technique and method of moments (MoM) is used to determine fields in different layers of the equivalent waveguide. Good agreements for the phase of the reflection coefficient between the proposed model and those published in selected literatures are obtained. (C) 2002 Wiley Periodicals, Inc.
Resumo:
The design and development of two X-band amplifying reflectarrays is presented. The arrays use dual-polarized aperture coupled patch antennas with FET transistors and phasing circuits to amplify a microwave signal and to radiate it in a chosen direction. Two cases are considered, one when a reflectarray converts a spherical wave due to a feed horn into a plane wave radiated into a boresight direction, and two, when the reflectarray converts a spherical wave due to a dual-polarized four-element feed array into a co-focal spherical wave. This amplified signal is received in an orthogonal port of the feed array so that the entire structure acts as a spatial power combiner. The two amplifying arrays are tested in the near-field zone for phase distribution over their apertures to achieve the required beam formation. Alternatively, their radiation patterns or gains are investigated.
Resumo:
Alcoholism is a major health problem in Western countries, yet relatively little is known about the mechanisms by which chronic alcohol abuse causes the pathologic changes associated with the disease. It is likely that chronic alcoholism affects a number of signaling cascades and transcription factors, which in turn result in distinct gene expression patterns. These patterns are difficult to detect by traditional experiments measuring a few mRNAs at a time, but are well suited to microarray analyses. We used cDNA microarrays to analyze expression of approximately 10 000 genes in the frontal and motor cortices of three groups of chronic alcoholic and matched control cases. A functional hierarchy was devised for classification of brain genes and the resulting groups were compared based on differential expression. Comparison of gene expression patterns in these brain regions revealed a selective reprogramming of gene expression in distinct functional groups. The most pronounced differences were found in myelin-related genes and genes involved in protein trafficking. Significant changes in the expression of known alcohol-responsive genes, and genes involved in calcium, cAMP, and thyroid signaling pathways were also identified. These results suggest that multiple pathways may be important for neuropathology and altered neuronal function observed in alcoholism.