960 resultados para Catalysis alkali
Resumo:
A hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) containing Co(II), Ni(II) and Cu(II) ions was prepared by curing N-MPGE and tetradentate Schiff base Co(II), Ni(II) and Cu(II) complexes. The curing polymerization reaction of N-MPGE with metal complexes as curing agents was studied. The cured samples were studied for thermal stability, chemical (acid/alkali/solvent) and water absorption resistance and homogeneity of the cured systems. The tetradentate Schiff base, 3-(Z)-2-piperazin-1-yl-ethylimino]-1,3-dihydro indol-2-one was synthesized by the condensation of Isatin (Indole-2, 3-dione) with 1-(2-aminoethyl)piperazine (AEP). Its complexes with Co(II), Ni(II) and Cu(II) have been synthesized and characterized by microanalysis, conductivity, Uv-Visible, FT-IR, TGA and magnetic susceptibility measurements. The spectral data revealed that the ligand acts as a neutral tetradentate Schiff base and coordinating through the azomethine nitrogen, two piperazine nitrogen atoms and carbonyl oxygen.
Resumo:
Epoxidation of alkenes by molecular oxygen is effected in high yields by catalysis of RuCl2(biox)(2) using isobutyraldehyde as the co-reductant: the reaction is stereospecific and regioselective.
Resumo:
It is known from temperature-programmed desorption studies that the binding energy of thiophene over Mo/gamma-Al2O3 and Co-Mo/gamma-Al2O3, hydrodesulfurization catalysts, is lower in the presence of hydrogen. The adsorption of thiophene on clean and hydrogen-adsorbed MoS2 was modelled using extended Huckel tight binding band structure calculations. In the eta(1) adsorption configuration the calculations show a lower binding energy for adsorption on the hydrogen-preadsorbed surface similar to that observed experimentally. The lowering is due to an increased occupancy of the Mo density of states in the presence of hydrogen.
Resumo:
We describe the synthesis and structural characterization of new layered bismuth titanates, A[Bi3Ti4O13] and A[Bi3PbTi5O16]for A = K, Cs, corresponding to n = 4 and 5 members of the Dion-Jacobson series of layered perovskites of the general formula, A[A'n-1BnO3n+1]. These materials have been prepared by solid state reaction of the constituents containing excess alkali, which is required to suppress the formation of competitive Aurivillius phases. Unlike the isostructural niobates and niobium titanates of the same series, the new phases reported here are spontaneously hydrated-a feature which could make them potentially useful as photocatalysts for water splitting reaction. On hydration of the potassium compounds, the c axis expands by ca. 2 Angstrom and loses its doubling [for example, the tetragonal lattice parameters of K[Bi3Ti4O13] and its dihydrate are respectively a = 3900(1)Angstrom c 37.57(2) Angstrom; a 3.885(1) Angstrom, c = 20.82(4) Angstrom]; surprisingly, the cesium analogues do not show a similar change on hydration.
Resumo:
Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.
Resumo:
In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.
Resumo:
We have studied the metal-insulator transition at integer fillings in a triply degenerate Hubbard model using the Lanczos method. The critical Coulomb interaction strength U-c, is found to depend strongly on the band filling, with U-c similar to root 3 W (W is the bandwidth) at half filling for this case with threefold degeneracy. We discuss the implications of our results on metal-insulator transitions in strongly correlated systems in general, and on the unusual electronic ground state of the alkali-metal-doped fullerenes, in particular. [S0163-1829(99)11003-8].
Resumo:
Several vanadium, tungsten, and molybdenum oxide bronzes have been prepared using microwave irradiation. Metal oxides and alkali metal iodides were used as starting materials, Intermittent grinding and inert atmosphere were found to be necessary for the synthesis of most of the bronzes, The reaction temperatures are remarkably lower than those employed for conventional synthetic techniques and the microwave assisted reactions proceed at extremely fast rates. The microwave synthesized bronzes consist of particles having long, rectangular rod-like morphology. (C) 1999 Academic Press.
Resumo:
A series of bile acid-based crown ethers (7a-c,12 and 13) were easily constructed from readily available precursors. Measurement of association constants (K-a) with alkali metal picrates in CHCl3 showed that azacrown ethers 7a-c and Chola-Cuowns 12 and 13 show greater binding towards Rb+ and K+. The presence of the aromatic moieties showed subtle changes in the binding properties. Insight II minimized structures show very different conformations of aromatic units in 7a-b and 13.
Resumo:
Fine particle and large surface area Cu/CeO2 catalysts of crystallite sizes in the range of 100-200 Angstrom synthesized by the solution combustion method have been investigated for NO reduction. Five percent Cu/CeO2 catalyst shows nearly 100% conversion of NO by NH3 below 300 degrees C, whereas pure ceria and Zr, Y, and Ca doped ceria show 85-95% NO conversion above 600 degrees C. Similarly NO reduction by CO has been observed over 5% Cu/CeO2 with nearly 100% conversion below 300 degrees C. Hydrocarbon (n-butane) oxidation by NO to CO2, N-2, and H2O has also been demonstrated over this catalyst below 350 degrees C making Cu/CeO2 a new NO reduction catalyst in the low temperature window of 150-350 degrees C. Kinetics of NO reduction over 5% Cu/CeO2 have also been investigated. The rate constants are in the range of 1.4 x 10(4) to 2.3 x 10(4) cm(3) g(-1) s(-1) between 170 and 300 degrees C. Cu/CeO2 catalysts are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy where Cu2+ ions are shown to be dispersed on the CeO2 surface. (C) 1999 Academic Press.
Resumo:
A series of Pd ion-substituted CeO2-ZrO2 solid solutions were synthesized using the solution combustion technique. H2O2-assisted degradation of orange G was carried out in the presence of the catalysts. The activity of the catalysts was found to increase with the introduction of the second component in the solid solution, as signified by an increase in the rate constants and lowering of activation energy. The study showed the involvement of lattice oxygen and the importance of reducibility of the compound for the reaction. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Recently, we demonstrated a very general route to monolithic macroporous materials prepared without the use of templates (Rajamathi et al. J. Mater. Chem. 2001, 11, 2489). The route involves finding a precursor containing two metals, A and B, whose oxides are largely immiscible. Firing of the precursor followed by suitable sintering results in a monolith from which one of the oxide phases can be chemically leached out to yield a macroporous mass of the other oxide phase. The metals A and B that we employed in the demonstration were Ni and Zn. From the NiO-ZnO monolith that was obtained by decomposing the precursor, ZnO could be leached out at high pH to yield macroporous NiO. In the present work, we show that combustion-chemical (also called self-propagating) decomposition of a mixture of Ni and Zn nitrates with urea as a fuel yields an intimate mixture of the oxides that can be sintered and leached with alkali to form a macroporous NiO monolith. The new process that we present here thereby avoids the need for a crystalline single-source precursor. A novel and unanticipated aspect of the present work is that the combination of high temperatures and rapid quenching associated with combustion synthesis results in an intimate mixture of wurtzite ZnO and the metastable rock-salt Ni1-xZnxO where x is about 0.3. Leaching this monolith with alkali gives a macroporous mass of rock-salt Ni1-xZnxO, which upon reduction in H-2/Ar forms macroporous Ni and ZnO. There are thus two stages in the process that lead to two modes of pore formation. The first is associated with leaching of ZnO by alkali. The second is associated with the reduction of porous Ni1-xZnxO to give porous Ni and ZnO.
Resumo:
Ceria-supported Au catalyst has been synthesized by the solution combustion method for the first time and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Au is dispersed as Au as well as Au3+ states on CeO2 surface of 20-30 nm crystallites. On heating the as-prepared 1% Au/CeO2 in air, the concentration of Au3- ions on CeO2 increases at the expense of Au. Catalytic activities for CO and hydrocarbon oxidation and NO reduction over the as-prepared and the heat-treated 1% Au/CeO2 have been carried out using a temperature-programmed reaction technique in a packed bed tubular reactor. The results are compared with nano-sized Au metal particles dispersed on alpha-Al2O3 substrate prepared by the same method. All the reactions over heat-treated Au/CeO2 occur at lower temperature in comparison with the as-prepared Au/CeO2 and Au/Al2O3. The rate of NO + CO reaction over as-prepared and heat-treated 1% Au/CeO2 are 28.3 and 54.0 mumol g(-1) s(-1) at 250 and 300 degreesC respeceively. Activation energy (E,) values are 106 and 90 kJ mol(-1) for CO + O-2 reaction respectively over as-prepared and heat-treated 1% Au/CeO2 respectively.
Resumo:
Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA).
Resumo:
A polyphosphate ester was synthesized by interfacial polycondensation of bisphenol-A and phenylphosphorodichloridate. Accelerated hydrolytic degradation studies were conducted under alkaline conditions. The effect of concentration of alkali and temperature were monitored. The rate of degradation reached a maximum value at 6 molar sodium hydroxide solution and then reduced. The activation energy for hydrolytic degradation was found to be 45 kcal/mol. Diffusion of alkali into the polymer pellet was studied at various concentrations of alkali and at various temperatures. The rate of diffusion also attained a maximum at 6M NaOH and the activation energy for diffusion process was found to be 12 kcal/mol. (C) 2002 John Wiley Sons, Inc.