989 resultados para Cast films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three analytical double-parameter criteria based on a bending model and a two-dimensional finite element analysis model are presented for the modeling of ductile thin film undergoing a nonlinear peeling process. The bending model is based on different governing parameters: (1) the interfacial fracture toughness and the separation strength, (2) the interfacial fracture toughness and the crack tip slope angle, and (3) the interfacial fracture toughness and the critical Mises effective strain of the delaminated thin film at the crack tip. Thin film nonlinear peeling under steady-state condition is solved with the different governing parameters. In addition, the peeling test problem is simulated by using the elastic-plastic finite element analysis model. A critical assessment of the three analytical bending models is made by comparison of the bending model solutions with the finite element analysis model solutions. Furthermore, through analyses and comparisons for solutions based on both the bending model and the finite element analysis model, some connections between the bending model and the finite element analysis model are developed. Moreover, in the present research, the effect of different selections for cohesive zone shape on the ductile film peeling solutions is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rates of erosive wear have been measured for a series of eight polyester-based one-component castable polyurethane elastomers, with widely varying mechanical properties. Erosion tests were conducted with airborne silica sand, 120μm in particle size, at an impact velocity of 50 ms-1 and impact angles of 30° and 90°. For these materials, which all showed similar values of rebound resilience, the erosion rate increased with increasing hardness, tensile modulus and tensile strength. These findings are at variance with those expected for wear by abrasion, perhaps because of differences in the strain rate or strain levels imposed on the elastomer during erosion and abrasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of amorphous carbon (a-C) deposited using a filtered cathodic vacuum arc as a function of the ion energy and substrate temperature are reported. The sp3 fraction was found to strongly depend on the ion energy, giving a highly sp3 bonded a-C denoted as tetrahedral amorphous carbon (ta-C) at ion energies around 100 eV. The optical band gap was found to follow similar trends to other diamondlike carbon films, varying almost linearly with sp2 fraction. The dependence of the electronic properties are discussed in terms of models of the electronic structure of a-C. The structure of ta-C was also strongly dependent on the deposition temperature, changing sharply to sp2 above a transition temperature, T1, of ≈200°C. Furthermore, T1 was found to decrease with increasing ion energy. Most film properties, such as compressive stress and plasmon energy, were correlated to the sp3 fraction. However, the optical and electrical properties were found to undergo a more gradual transition with the deposition temperature which we attribute to the medium range order of sp2 sites. We attribute the variation in film properties with the deposition temperature to diffusion of interstitials to the surface above T1 due to thermal activation, leading to the relaxation of density in context of a growth model. © 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of hydrogenated amorphous silicon carbide (a-SiC:H) films from a mixture of silane, acetylene and hydrogen gas using the electron cyclotron resonance chemical vapour deposition (ECR-CVD) process is reported. The variation in the deposition and film characteristics such as the deposition rate, optical band gap and IR absorption as a function of the hydrogen dilution is investigated. The deposition rate increases to a maximum value of about 250 Å min-1 at a hydrogen dilution ratio of about 20 (hydrogen flow (sccm)/acetylene + silane flow (sccm)) and decreases in response to a further increase in the hydrogen dilution. There is no strong dependence of the optical band gap on the hydrogen dilution within the dilution range investigated (10-60) and the optical band gap calculated from the E04 method varied marginally from about 2.85 to 3.17 eV. The room temperature photoluminescence (PL) peak energy and intensity showed a prominent shift to a maximum value of about 2.17 eV corresponding to maximum PL intensity at a moderate hydrogen dilution of about 30. The PL intensity showed a strong dependence on the hydrogen dilution variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focused laser micromachining in an optical microscope system is used to prototype packages for optoelectronic devices and to investigate new materials with potential applications in packaging. Micromachined thin films are proposed as mechanical components to locate fibres and other optical and electrical components on opto-assemblies. This paper reports prototype structures which are micromachined in silicon carbide to produce beams 5 μm thick by (i) laser cutting a track in a SiC coated Si wafer, (ii) undercutting by anisotropic silicon etching using KOH in water, and (iii) trimming if necessary with the laser system. This approach has the advantage of fast turn around and proof of concept. Mechanical test data are obtained from the prototype SiC beam package structures by testing with a stylus profilometer. The Youngs modulus obtained for chemical vapour deposited silicon carbide is 360 +/- 50 GPa indicating that it is a promising material for packaging applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cross-sectional transmission electron microscope study of the low density layers at the surface and at the substrate-film interface of tetrahedral amorphous carbon (ta-C) films grown on (001) silicon substrates is presented. Spatially resolved electron energy loss spectroscopy is used to determine the bonding and composition of a tetrahedral amorphous carbon film with nanometre spatial resolution. For a ta-C film grown with a substrate bias of -300 V, an interfacial region approximately 5 nm wide is present in which the carbon is sp2 bonded and is mixed with silicon and oxygen from the substrate. An sp2 bonded layer observed at the surface of the film is 1.3 ± 0.3 nm thick and contains no detectable impurities. It is argued that the sp2 bonded surface layer is intrinsic to the growth process, but that the sp2 bonding in the interfacial layer at the substrate may be related to the presence of oxygen from the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made to prepare a YBa2Cu3O 7-δ (YBCO) thin film doped with ferromagnetic CoFe 2O4. Transmission electron microscopy of the resultant samples shows, however, that Y(Fe, Co)O3 forms as a nanoparticulate dispersion throughout the film in preference to CoFe2O4, leaving the YBCO yttrium deficient. As a consequence, the superconducting properties of the sample are poor, with a self-field critical current density of just 0.25 MA cm-2. Magnetic measurements indicate however that the Y(Fe, Co)O3 content, together with any other residual phases, is also ferromagnetic, and some interesting features are present in the in-field critical current behaviour, including a reduced dependence on applied field and a strong c-axis peak in the angular dependence. The work points the way towards future attempts utilising YFeO3 as an effective ferromagnetic pinning additive for YBCO. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-field properties of polycrystalline superconducting TlBaCaCuO films fabricated by the incorporation of thallium vapour into air-atomised BaCaCuO precursors are described. Thick films with Tc values in the range 106-111 K have been prepared on polycrystalline yttria-stabilised zirconia substrates. The surface morphology, crystal structure and composition of the films are related to their high-field transport and magnetisation properties. Typical 10 mm × 9 mm films show Jc values > 1×104 A/cm2 at 77 K (0 T). The best film has a Jc=1.3×104 A/cm2 (Ic=3.6 A) at 77 K (0 T). Films prepared on 26 mm×9 mm substrates show typical large-area Jc values > 0.5×104 A/cm2 (77 K, 0 T). A square planar specimen of dimensions 4.3 mm ×4.3 mm exhibited magnetisation Jc values=1.2×105 A/cm2 at 4.2 K (0.1 T), 9.3×104 A/cm2 at 10 K (0.1 T), 3.3×104 A/ cm2 at 4 K (8 T), and 1.6×104 A/cm2 at 10 K (8 T). © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thickness of the near-interface regions (NIR) and central bulk ohmic resistivity in lead lanthanum zirconate titanate ferroelectric thin films were investigated. A method to separate the low-resistive near-interface regions (NIRs) from the high-resistive central bulk region (CBR) in ferroelectric thin films was presented. Results showed that the thickness of the NIRs depended on the electrode materials in use and the CBR resistivity depended on the impurity doping levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the deposition, annealing and characterisation of semi-insulating oxygen-doped silicon films at temperatures compatible with polysilicon circuitry on glass. The semi-insulating layers are deposited by the plasma enhanced chemical vapour deposition technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures at a temperature of 350 °C. The as-deposited films are then furnace annealed at 600 °C which is the maximum process temperature. Raman analysis shows the as-deposited and annealed films to be completely amorphous. The most important deposition variable is the N2O SiH4 gas ratio. By varying the N2O SiH4 ratio the conductivity of the annealed films can be accurately controlled, for the first time, down to a minimum of ≈10-7Ω-1cm-1 where they exhibit a T -1 4 temperature dependence indicative of a hopping conduction mechanism. Helium dilution of the reactant gases is shown to improve both film uniformity and reproducibility. A model for the microstructure of these semi-insulating amorphous oxygen-doped silicon films is proposed to explain the observed physical and electrical properties. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the annealing and characterisation of semi-insulating oxygen-doped silicon films deposited by the Plasma Enhanced Chemical Vapour Deposition (PECVD) technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures. The maximum process temperature is chosen to be compatible with large area polycrystalline silicon (poly-Si) circuitry on glass. The most important deposition variable is shown to be the N2O SiH4 gas ratio. Helium dilution results in improved film uniformity and reproducibility. Raman analysis shows the 'as-deposited' and annealed films to be completely amorphous. A model for the microstructure of these Semi-Insulating Amorphous Oxygen-doped Silicon (SIAOS) films is proposed to explain the observed physical and electrical properties. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic moment of square planar melt processed YBa2Cu3O7-δ thick films is observed to scale with the cube of the sample width at 4.2 K, suggesting that current flow on the length scale of the film determines its magnetization at this temperature. A well-defined discontinuity in slope in the scaling data at a sample width corresponding to the average grain size (≈2 mm) implies the coexistence of distinct intra- and inter-grain critical current densities of 1.1 × 105Acm-2 and 0.4 × 105Acm-2 at 1 T and 4.2 K. The presence of a critical state in the films at 4.2T is confirmed by removing the central section from a specimen. The observed change in magnetic moment is in excellent agreement with theory for fields greater than ≈2 T. A critical state is not observed at 77 K which suggests that the grains are only weakly coupled at the higher temperature. © 1994.