959 resultados para Cashew apple bagasse


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The objective of this study was to evaluate the antimicrobial activity of six toothpastes for infants: 3 fluoride-free experimental toothpastes - cashew-based, mango-based and without plant extract and fluoride compared with 2 commercially fluoride-free toothpastes and 1 fluoridated toothpastes. Methods: Six toothpastes for infants were evaluated in this study: (1) experimental cashew-based toothpaste; (2) experimental mango-based toothpaste; (3) experimental toothpaste without plant extract and fluoride (negative control); (4) First Teeth brand toothpaste; (5) Weleda brand toothpaste; and (6) Tandy brand toothpaste (positive control). The antimicrobial activity was recorded against Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, and Candida albicans using the agar plate diffusion test. Results: First Teeth, Weleda, mango-based toothpaste, and toothpaste without plant extract presented no antimicrobial effect against any of the tested micro-organisms. Cashew toothpaste had antimicrobial activity against S mutans, S sobrinus, and L acidophilus, but it showed no antimicrobial activity against C albicans. There was no statistical difference between the inhibition halo of cashew and Tandy toothpastes against S mutans and L acidophilus. Conclusions: Cashew fluoride-free toothpaste had inhibitory activity against Streptococcus mutans and Lactobacillus acidophilus, and these results were similar to those obtained for fluoridated toothpaste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considerable losses during apple fruit storage occur due to microbiological diseases, mainly caused by Penicillium expansum, which in addition to fruit pulp deterioration produces patulin, a mycotoxin with carcinogenic and teratogenic activity. Biological control of post-harvest disease by antagonist yeasts focused on killer toxins is an appreciable alternative to the chemical fungicides, due to the low possibility of toxic residues demonstrated during fermentative processes. Twenty out of 44 yeasts (16 isolated from fruits, 10 from corn silage and 18 from laboratory anthill), showed antagonism against spores of P. expansum. The assay in solid medium pointed the strongest nutrient competition antagonism by D. hansenii strain C1 (31 mm inhibition diameter), while D. hansenii strain C7 (15 mm) showed higher antibiosis and parasitism pattern. In the following step the extracellular activity was tested performing the assay with culture supernatant in Yeast Medium agar, where C. guilliermondii P3 was more effective against conidia germination (inhibition rate of 58.15%) while P. ohmeri showed better inhibition on micelial growth (66.17%). The antibiosis showed by both yeasts could suggest probable mechanism associated with killer phenomenon, once both strains were killer positive against sensitive reference strains (S. cerevisiae NCYC 1006 and P. kluyveri CAY-15). In order to enhance the production of antifungal substance, these yeasts were cultivated with P. expansum, but the difference between culture supernatant obtained from yeasts cultivated alone and with mould was not significant (P > 0.05). The results demonstrated that the yeasts application constitute a promising tool, enhancing the biological control of P. expansum in post-harvest diseases of apple fruit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Broiler chicken production is widely dispersed across the globe, and one important issue for growers is the selection of adequate bedding material, as the availability and price of substrates varies among countries and regions within a same country. This study aimed at applying a multiple criteria analysis approach for the selection of the most appropriate bedding material for broiler production. Based on field research data and growers' experience, the most desirable characteristics of a litter material were chosen as the main criteria. The selected materials were wood shavings, rice husks, chopped Napier grass (Pennisetum pupureum), 50% sugar cane bagasse (Saccharum L.) plus 50% wood shavings, 50% sugar cane bagasse (Saccharum L.) plus 50% rice husks, and pure sugar cane bagasse (Saccharum L.). The analytical hierarchy process (AHP) was applied for selecting the most suitable bedding material. Validation was performed using data from previous studies carried out in central-western Brazil on the effects of different types of bedding material on broiler carcass quality. Considering the selected criteria, several bedding materials were tested and ranked, and the results showed that wood-shavings litter was the best option (weight = 0.28), followed by rice husks (weight = 0.24). All other tested alternatives presented lower scores and were, therefore, not considered for use. The AHP approach was found to be an efficient tool to select the most appropriate litter material under specific scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this in vitro study was to quantify the alterations on human root dentin permeability after exposure to different acid fruit juices and to evaluate the effect of toothbrushing with electric or sonic toothbrush after acid exposure. The root dentin of 50 extracted third molars was exposed with a high speed bur. Crowns were sectioned above the cementoenamel junction and root fragments were used to prepare dentin specimens. Specimens were randomly assigned to 5 groups according to the fruit juice (kiwifruit, starfruit, green apple, pineapple and acerolla). Each specimen was connected to a hydraulic pressure apparatus to measure root dentin permeability using fluid filtration method after the following sequential steps: I) conditioning with 37% phosphoric acid for 30 s, II) root scaling, III) exposure to acid fruit juices for 5 min and IV) electric or sonic toothbrushing without dentifrice for 3 min. Data were analyzed statistically by the Wilcoxon and Mann-Whitney tests at 5% significance level. All fruit juices promoted a significant increase of dentin permeability while toothbrushing decreased it significantly (p<0.05). It may be concluded that all acid fruit juices increased root dentin permeability, while toothbrushing without dentifrice after acid exposure decreased the permeability. The toothbrush mechanism (electric or sonic) had no influence on the decrease of root dentin permeability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strain of the flamentous fungus Aspergillus niger was isolated and shown to possess extracellular xylanolytic activity. These enzymes have biotechnological potential and can be employed in various industries. This fungus produced its highest xylanase activity in a medium made up of 0.1% CaCO3, 0.5% NaCl, 0.1% NH4Cl, 0.5% corn steep liquor and 1% carbon source, at pH 8.0. A low-cost hemicellulose residue (powdered corncob) proved to be an excellent inducer of the A. niger xylanolytic complex. Filtration of the crude culture medium with suspended kaolin was ideal for to clarify the extract and led to partial purifcation of the xylanolytic activity. The apparent molecular mass of the xylanase was about 32.3 kDa. Maximum enzyme activity occurred at pH 5.0 and 55-60oC. Apparent Km was 10.41 ± 0.282 mg/mL and Vmax was 3.32 ± 0.053 U/mg protein, with birchwood xylan as the substrate. Activation energy was 4.55 kcal/mol and half-life of the crude enzyme at 60oC was 30 minutes. Addition of 2% glucose to the culture medium supplemented with xylan repressed xylanase production, but in the presence of xylose the enzyme production was not affected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipase production by Trichoderma harzianum was evaluated in submerged fermentation (SF) and solid-state fermentation (SSF) using a variety of agro-industrial residues. Cultures in SF showed the highest activity (1.4 U/mL) in medium containing 0.5 % (w/v) yeast extract, 1 % (v/v) olive oil and 2.5 C:N ratio. This paper is the first to report lipase production by T. harzianum in SSF. A 1:2 mixture of castor oil cake and sugarcane bagasse supplemented with 1 % (v/w) olive oil showed the best results among the cultures in SSF (4 U/g ds). Lipolytic activity was stable in a slightly acidic to neutral pH, maintaining 50 % activity after 30 min at 50 C. Eighty percent of the activity remained after 1 h in 25 % (v/v) methanol, ethanol, isopropanol or acetone. Activity was observed with vegetable oils (olive, soybean, corn and sunflower) and long-chain triacylglycerols (triolein), confirming the presence of a true lipase. The results of this study are promising because they demonstrate an enzyme with interesting properties for application in catalysis produced by fermentation at low cost. © 2012 Springer-Verlag and the University of Milan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metagenomics has been widely employed for discovery of new enzymes and pathways to conversion of lignocellulosic biomass to fuels and chemicals. In this context, the present study reports the isolation, recombinant expression, biochemical and structural characterization of a novel endoxylanase family GH10 (SCXyl) identified from sugarcane soil metagenome. The recombinant SCXyl was highly active against xylan from beechwood and showed optimal enzyme activity at pH 6,0 and 45°C. The crystal structure was solved at 2.75 Å resolution, revealing the classical (β/α)8-barrel fold with a conserved active-site pocket and an inherent flexibility of the Trp281-Arg291 loop that can adopt distinct conformational states depending on substrate binding. The capillary electrophoresis analysis of degradation products evidenced that the enzyme displays unusual capacity to degrade small xylooligosaccharides, such as xylotriose, which is consistent to the hydrophobic contacts at the +1 subsite and low-binding energies of subsites that are distant from the site of hydrolysis. The main reaction products from xylan polymers and phosphoric acid-pretreated sugarcane bagasse (PASB) were xylooligosaccharides, but, after a longer incubation time, xylobiose and xylose were also formed. Moreover, the use of SCXyl as pre-treatment step of PASB, prior to the addition of commercial cellulolytic cocktail, significantly enhanced the saccharification process. All these characteristics demonstrate the advantageous application of this enzyme in several biotechnological processes in food and feed industry and also in the enzymatic pretreatment of biomass for feedstock and ethanol production. © 2013 Alvarez et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amylases from Rhizopus oryzae and Rhizopus microsporus var. oligosporus were obtained using agro-industrial wastes as substrates in submerged batch cultures. The enzymatic complex was partially characterised for use in the production of glucose syrup. Type II wheat flour proved better than cassava bagasse as sole carbon source for amylase production. The optimum fermentation condition for both microorganisms was 96 hours at 30°C and the amylase thus produced was used for starch hydrolysis. The product of the enzymatic hydrolysis indicated that the enzyme obtained was glucoamylase, only glucose as final product was attained for both microorganisms. R. oligosporus was of greater interest than R. oryzae for amylase production, taking into account enzyme activity, cultivation time, thermal stability and pH range. Glucose syrup was produced using concentrated enzyme and 100 g L-1 starch in a 4 hours reaction at 50°C. The bioprocess studied can contribute to fungus glucoamylase production and application. © 2013 Institute of Chemistry, Slovak Academy of Sciences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stillage is the main wastewater from ethanol production, containing a high chemical oxygen demand in addition to acidic and corrosive characteristics. Though stillage may be used as a soil fertilizer, its land application may be considered problematic due its high polluting potential. Anaerobic digestion represents an effective alternative treatment to reduce the pollution load of stillage. In addition, the methane gas produced within the process may be converted to energy, which can be directly applied to the treatment plant. The objective of this paper was to investigate the energetic potential of anaerobic digestion applied to stillage in the sugarcane ethanol industry. An overall analysis of the results indicates energy recovery capacity (ERC) values for methane ranging from 3.5% to 10%, respectively, for sugarcane juice and molasses. The processes employed to obtain the fermentable broth, as well as the distillation step, represent the main limiting factors to the energetic potential feasibility. Considering financial aspects the annual savings could reach up to US$ 30 million due to anaerobic digestion of stillage in relatively large-scale distilleries (365,000 m3 of ethanol per year). The best scenarios were verified for the association between anaerobic digestion of stillage and combustion of bagasse. In this case, the fossil fuels consumption in distilleries could be fully ceased, such the ERC of methane could reach values ranging from 140% to 890%. © 2013 Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inadequate and indiscriminate disposal of sugarcane vinasse in soils and water bodies has received much attention since decades ago, due to environmental problems associated to this practice. Vinasse is the final by-product of the biomass distillation, mainly for the production of ethanol, from sugar crops (beet and sugarcane), starch crops (corn, wheat, rice, and cassava), or cellulosic material (harvesting crop residues, sugarcane bagasse, and wood). Because of the large quantities of vinasse produced, alternative treatments and uses have been developed, such as recycling of vinasse in fermentation, fertirrigation, concentration by evaporation, and yeast and energy production. This review was aimed at examining the available data on the subject as a contribution to update the information on sugarcane vinasse, from its characteristics and chemical composition to alternatives uses in Brazil: fertirrigation, concentration by evaporation, energy production; the effects on soil physical, chemical and biological properties; its influence on seed germination, its use as biostimulant and environmental contaminant. The low pH, electric conductivity, and chemical elements present in sugarcane vinasse may cause changes in the chemical and physical-chemical properties of soils, rivers, and lakes with frequent discharges over a long period of time, and also have adverse effects on agricultural soils and biota in general. Thus, new studies and green methods need to be developed aiming at sugarcane vinasse recycling and disposal. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stagnant effective thermal conductivities (K0) of sugar cane bagasse (SCB), wheat bran (WB), orange pulp and peel (OPP) and their combination (weight proportion 1:2:2 SCB/OPP/WB) were obtained using the line heat source method. These solid materials were applied to pectinase production via solid-state fermentation. The moisture content ranged from 4 to 80% (w.b.). A conduction mechanism through the porous media was observed, along with conduction through a liquid film and contact thermal resistance between the samples and the probe. K0 was low for intermediate moisture contents and approached the molecular conductivity of water for high moisture contents. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)