994 resultados para Carrier Proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used synthetic peptide antibodies to probe conformational changes that occur during the cleavage cascade which generates the capsid proteins of a picornavirus. The initial translation product of 97 kDa, the precursor of all four structural proteins, is cleaved to form a 63 kDa fragment which, we show, has significantly different folding characteristics to both its larger parent and its products. We demonstrate that proteolytic cleavages as distant as 520 residues from epitopes confer sufficiently large conformational changes as to render them unrecognisable. To our knowledge, this is the first demonstration of this phenomenon in the picornavirus system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maillard reaction comprises a complex network of reactions which has proven to be of great importance in both food science and medicine. The majority of methods developed for studying the Maillard reaction in food have focused on model systems containing amino acids and monosaccharides. In this study, a number of electrophoretic techniques, including two-dimensional gel electrophoresis and capillary electrophoresis, are presented. These have been developed specifically for the analysis of the Maillard reaction of food proteins, and are giving important insights into this complex process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AINT/ERIC/TACC genes encode novel proteins with a coiled coil domain at their C-terminus. The founding member of this expanding family of genes, transforming acidic coiled coil 1 (TACC1), was isolated from a BAC contig spanning the breast cancer amplicon-1 on 8p11. Transfection of cells in vitro with TACC1 resulted in anchorage-independent growth consistent with a more "neoplastic" phenotype. Database searches employing the human TACC1 sequence revealed other novel genes, TACC2 and TACC3, with substantial sequence homology particularly in the C-terminal regions encoding the coiled coil domains. TACC2, located at 10q26, is similar to anti-zuai-1 (AZU-1), a candidate breast tumour suppressor gene, and ECTACC, an endothelial cell TACC which is upregulated by erythropoietin (Epo). The murine homologue of TACC3, murine erythropoietin-induced cDNA (mERIC-1) was also found to be upregulated by Epo in the Friend virus anaemia (FVA) model by differential display-PCR. Human ERIC-1, located at 4p16.3, has been cloned and encodes an 838-amino acid protein whose N- and C-terminal regions are highly homologous to the shorter 558-amino acid murine protein, mERIC-1. In contrast, the central portions of these proteins differ markedly. The murine protein contains four 24 amino acid imperfect repeats. ARNT interacting protein (AINT), a protein expressed during embryonic development in the mouse, binds through its coiled coil region to the aryl hydrocarbon nuclear translocator protein (ARNT) and has a central portion that contains seven of the 24 amino acid repeats found in mERIC-1. Thus mERIC-1 and AINT appear to be developmentally regulated alternative transcripts of the gene. Most members of the TACC family discovered so far contain a novel nine amino acid putative phosphorylation site with the pattern [R/K]-X(3)-[E]-X(3)-Y. Genes with sequence homology to the AINT/ERIC/TACC family in other species include maskin in Xenopus, D-TACC in Drosophila and TACC4 in the rabbit. Maskin contains a peptide sequence conserved among eIF-4E binding proteins that is involved in oocyte development. D-TACC cooperates with another conserved microtubule-associated protein Msps to stabilise spindle poles during cell division. The diversity of function already attributed to this protein family, including both transforming and tumour suppressor properties, should ensure that a new and interesting narrative is about to unfold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a medical treatment in which a combination of a photosensitising drug and visible light causes destruction of selected cells. Due to the lack of true selectivity of preformed photosensitisers for neoplastic tissue and their high molecular weights, PDT of superficial skin lesions has traditionally been mediated by topical application of the porphyrin precursor 5-aminolevulinic acid (ALA). Objective: This article aims to review the traditional formulation-based approaches taken to topical delivery of ALA and discusses the more innovative strategies investigated for enhancement of PDT mediated by topical application of ALA and preformed photosensitisers. Methods: All of the available published print and online literature in this area was reviewed. As drug delivery of agents used in PDT is still something of an emerging field, it was not necessary to go beyond literature from the last 30 years. Results/conclusion: PDT of neoplastic skin lesions is currently based almost exclusively on topical application of simple semisolid dosage forms containing ALA or its methyl ester. Until expiry of patents on the current market-leading products, there is unlikely to be a great incentive to engage in design and evaluation of innovative formulations for topical PDT, especially those containing the more difficult-to-deliver preformed photosensitisers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The treatment of solid tumours and angiogenic ocular diseases by photodynamic therapy (PDT) requires the injection of a photosensitiser (PS) to destroy target cells through a combination of visible light irradiation and molecular oxygen. There is currently great interest in the development of efficient and specific carrier delivery platforms for systemic PDT. Objective: This article aims to review recent developments in systemic carrier delivery platforms for PDT, with an emphasis on target specificity. Methods: Recent publications, spanning the last five years, concerning delivery carrier platforms for systemic PDT were reviewed, including PS conjugates, dendrimers, micelles, liposomes and nanoparticles. Results/conclusion: PS conjugates and supramolecular delivery platforms can improve PDT selectivity by exploiting cellular and physiological specificities of the targeted tissue. Overexpression of receptors in cancer and angiogenic endothelial cells allows their targeting by affinity-based moieties for the selective uptake of PS conjugates and encapsulating delivery carriers, while the abnormal tumour neovascularisation induces a specific accumulation of heavy weighted PS carriers by enhanced permeability and retention (EPR) effect. in addition, polymeric prodrug delivery platforms triggered by the acidic nature of the tumour environment or the expression of proteases can be designed. Promising results obtained with recent systemic carrier platforms will, in due course, be translated into the clinic for highly efficient and selective PDT protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinase B (PKB) has emerged as the focal point for many signal transduction pathways, regulating multiple cellular processes such as glucose metabolism, transcription, apoptosis, cell proliferation, angiogenesis, and cell motility. In addition to acting as a kinase toward many substrates involved in these processes, PKB forms complexes with other proteins that are not substrates, but rather act as modulators of PKB activity and function. In this review, we discuss the implications of these data in understanding the multitude of functions predicted for PKB in cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Par proteins are involved in determining cellular asymmetry. Recent studies have identified one of these proteins, Par6, as a key regulator of cell polarity and transformation via its interactions with small GTPases and atypical forms of protein kinase C.