988 resultados para Caribbean Studies
Resumo:
In response to limited research conducted on the practice of assessment for learning (AfL) in higher education and in Asian educational settings, this qualitative study, using sociocultural theories of learning and a multiple case study approach, investigates how AfL was implemented by three lecturers in one Vietnamese university. Findings revealed that the lecturers engaged with AfL principles and practices to some extent. However, despite the lecturers' significant efforts, Vietnamese sociocultural factors such as respect for harmony, hierarchy, and examination-oriented learning, impacted on their practice of AfL. This study therefore argues that AfL requires adaptation for it to be effective in the Vietnamese tertiary context.
Resumo:
Pro-Gly segments in peptides and proteins are prone to adopt the 0-turn conformation. This paper reports experimental data for the presence of this conformation in a linear tripeptide N-acetyl-L-prolylglycyl-L-phenylalanineb oth in the solid state and in solution. X-ray diffraction data on the tripeptide crystal show that it exists in the type I1 0-turn conformation. CD and proton NMR data show that this conformation persists in trifluoroethanol and methanol solutions in equilibrium with the nonhydrogen-bonded structures. Isomerization around the acetyl-prolyl bond is seen to take place in dimethyl sulfoxide solutions of the tripeptide.
Studies on serum progesterone levels in Zebu × Holstein heifers during pre- and peripubertal periods
Resumo:
The peripheral serum progesterone levels of six normal Zebu × Holstein heifers (75% Holstein inheritance) during the prepubertal period (−150 days) were low (0.23 ± 0.06 ng/ml). They reached maximal values (0.73 ± 0.06 ng/ml) by −45 days (P<0.05 for progesterone values on −90th vs. −45th days) and thereafter decreased to the base level at the time of puberty. The mean (± SEM) age and body weight at puberty of these six heifers were 720 ± 20.70 days and 260.67 ± 8.82 kg, respectively. The serum progesterone levels remained low (0.38 ± 0.17 ng/ml) during early oestrus (up to 28 h) and gradually increased to 2.3 ± 0.84 ng/ml by the 15th day of the cycle.
Resumo:
Intra-atomic Auger transitions involving metal energy levels are found to be useful in studying the surface oxidation state as well as the oxidation of metals. Transition Metal oxides also exhibit interatomic Auger transitions, the intensities of which depend on the occupation of the metal d level. The probability of the interatomic transition is therefore highest in oxides where the metal has the d' configuration. The competition between intra-atomic and interatomic Auger transitions in oxides will be discussed as also the use of the interatomic transitions in the study of metal oxidation.
Resumo:
Irreversible, Pressure induced, quasicrystal-to-crystal transitions are observed for the first time in melt spun alloys at 4.9 GPa for Al 78 Mn22 and 9.3 GPa for Al86 Mn14 by monitoring the electrical resistivities of these alloys as a function of pressure. Electron diffraction and x-ray measurements are used to show that these quasicrystalline phases have icosohedral point group symmetry. The crystalline phases which appear at high pressures are identified as h.c.p. for Al78 Mn22 and orthorhombic for Al86 Mn14.
Resumo:
This paper demonstrates the application of inverse filtering technique for power systems. In order to implement this method, the control objective should be based on a system variable that needs to be set on a specific value for each sampling time. A control input is calculated to generate the desired output of the plant and the relationship between the two is used design an auto-regressive model. The auto-regressive model is converted to a moving average model to calculate the control input based on the future values of the desired output. Therefore, required future values to construct the output are predicted to generate the appropriate control input for the next sampling time.
Resumo:
Methanol adsorbs molecularly on the surfaces of Cu–Pd alloys at low temperatures and transforms to CH3O or CO on warming, depending upon the alloy composition. On oxygen presorbed Cu–Pd alloy surfaces, adsorption of methanol gives rise to H2O and H2CO. CH3OH adsorbed molecularly on the surfaces of Cu–Au alloys and CH3O is formed only at relatively high temperatures.
Resumo:
Induced Cotton effects have been observed in the visible region on interaction of bilirubin with chiral mono- and diamines and poly-l-lysine. At alkaline pH distinct CD spectra are observed for bilirubin bound to the α-helical and β-sheet conformation of poly-l-lysine, which differ from that observed for the pigment bound to human serum albumin. The CD pattern observed on binding to N-acetyl-Lys-N1-methylamide in CH2Cl2 and dioxane is different from that observed in the presence of l-Ala-NH-(CH2)6-NH-l-Ala in dioxane. The latter case resembles the spectrum observed in the presence of human serum albumin. Binding to the helical polypeptide melittin and the antiparallel β-sheet peptide, gramicidin S, in aqueous solutions results in opposite signs of the bilirubin CD bands. The quenching of tryptophan fluorescence in melittin, in aqueous solution and enhancement of bilirubin fluorescence in dioxane on binding to gramicidin S have been used to monitor pigment-peptide interactions. The results suggest the utility of bilirubin as a conformational probe.
Resumo:
The nucleic acid binding properties of the testis protein, TP, were studied with the help of physical techniques, namely, fluorescence quenching, UV difference absorption spectroscopy, and thermal melting. Results of quenching of tyrosine fluorescence of TP upon its binding to double-stranded and denatured rat liver nucleosome core DNA and poly(rA) suggest that the tyrosine residues of TP interact/intercalate with the bases of these nucleic acids. From the fluorescence quenching data, obtained at 50 mM NaCl concentration, the apparent association constants for binding of TP to native and denatured DNA and poly(rA) were calculated to be 4.4 X 10(3) M-1, 2.86 X 10(4) M-1, and 8.5 X 10(4) M-1, respectively. UV difference absorption spectra upon TP binding to poly(rA) and rat liver core DNA showed a TP-induced hyperchromicity at 260 nm which is suggestive of local melting of poly(rA) and DNA. The results from thermal melting studies of binding of TP to calf thymus DNA at 1 mM NaCl as well as 50 mM NaCl showed that although at 1 mM NaCl TP brings about a slight stabilization of the DNA against thermal melting, a destabilization of the DNA was observed at 50 mM NaCl. From these results it is concluded that TP, having a higher affinity for single-stranded nucleic acids, destabilizes double- stranded DNA, thus behaving like a DNA-melting protein.
Resumo:
Proton second moment (M2) and spin-lattice relaxation time (T1) of Ammonium Hydrogen Bischloroacetate (ABCA) have been measured in the range 77-350 K. A value of 6.5 G2 has been observed for the second moment at room temperature, which is typical of NH4+ reorientation and also a second moment transition in the range 170-145 K indicates the freezing of NH4+ motion. The NMR signal disappears dicontinuously at 128 K. Proton spin-lattice relaxation time (T1) Vs temperature, yielded only one sharp miniumum of 1.9 msec which is again typical of NH4+ reorientation. A slope change at 250 K is also observed, prbably due to CH2 motion. Further, the FID signal disappears at 128 K. Thus the Tc appears to be 128 K (of two reported values 120 K and 128 K). Activation energies have been calculated and the mechanism of the phase transition is discussed.
Resumo:
Although the applications of Auger electron spectroscopy in surface analysis have by far outweighed its use as a tool to investigate electron states of solids and surfaces, there are a variety of situations where Auger spectroscopy provides unique information. Apart from the chemical shifts, Auger intensities are useful in determining the number of d-electron states in transition metal systems. Auger spectroscopy is a good probe to investigate the surface oxidation of metals. In addition to the intra-atomic Auger transitions, inter-atomic transitions observed in oxides and other systems reveal the nature of electron states of surfaces. Charge-transfer and hybridization effects in alloys are also usefully studied by Auger spectroscopy. Auger electron spectroscopy has not been a popular technique to investigate adsorption of molecules on surfaces, but the technique is useful to obtain fingerprints of surface species.
Resumo:
Sleep is governed by a homeostatic process in which the duration and quality of previous wake regulate the subsequent sleep. Active wakefulness is characterized with high frequency cortical oscillations and depends on stimulating influence of the arousal systems, such as the cholinergic basal forebrain (BF), while cessation of the activity in the arousal systems is required for slow wave sleep (SWS) to occur. The site-specific accumulation of adenosine (a by-product of ATP breakdown) in the BF during prolonged waking /sleep deprivation (SD) is known to induce sleep, thus coupling energy demand to sleep promotion. The adenosine release in the BF is accompanied with increases in extracellular lactate and nitric oxide (NO) levels. This thesis was aimed at further understanding the cellular processes by which the BF is involved in sleep-wake regulation and how these processes are affected by aging. The BF function was studied simultaneously at three levels of organization: 1) locally at a cellular level by measuring energy metabolites 2) globally at a cortical level (the out-put area of the BF) by measuring EEG oscillations and 3) at a behavioral level by studying changes in vigilance states. Study I showed that wake-promoting BF activation, particularly with glutamate receptor agonist N-methyl-D-aspatate (NMDA), increased extracellular adenosine and lactate levels and led to a homeostatic increase in the subsequent sleep. Blocking NMDA activation during SD reduced the high frequency (HF) EEG theta (7-9 Hz) power and attenuated the subsequent sleep. In aging, activation of the BF during SD or experimentally with NMDA (studies III, IV), did not induce lactate or adenosine release and the increases in the HF EEG theta power during SD and SWS during the subsequent sleep were attenuated as compared to the young. These findings implicate that increased or continuous BF activity is important for active wake maintenance during SD as well as for the generation of homeostatic sleep pressure, and that in aging these mechanisms are impaired. Study II found that induction of the inducible NO synthase (iNOS) during SD is accompanied with activation of the AMP-activated protein kinase (AMPK) in the BF. Because decreased cellular energy charge is the most common cause for AMPK activation, this finding implicates that the BF is selectively sensitive to the metabolic demands of SD as increases were not found in the cortex. In aging (study III), iNOS expression and extracellular levels of NO and adenosine were not significantly increased during SD in the BF. Furthermore, infusion of NO donor into the BF did not lead to sleep promotion as it did in the young. These findings indicated that the NO (and adenosine) mediated sleep induction is impaired in aging and that it could at least partly be due to the reduced sensitivity of the BF to sleep-inducing factors. Taken together, these findings show that reduced sleep promotion by the BF contributes to the attenuated homeostatic sleep response in aging.
Resumo:
Acute heart failure syndrome represents a prominent and growing health problem all around the world. Ideally, medical treatment for patients admitted to hospital because of this syndrome, in addition to alleviating the acute symptoms, should also prevent myocardial damage, modulate neurohumoral and inflammatory activation, and preserve or even improve renal function. Levosimendan is a cardiac enhancer having both inotropic and vasodilatory effects. It is approved for the short-term treatment of acutely decompensated chronic heart failure, but it has been shown to have beneficial clinical effects also in ischemic heart disease and septic shock as well as in perioperative cardiac support. In the present study, the mechanisms of action of levosimendan were studied in isolated guinea-pig heart preparations: Langendorff-perfused heart, papillary muscle and permeabilized cardiomyocytes as well as in purified phosphodiesterase isoenzyme preparations. Levosimendan was shown to be a potent inotropic agent in isolated Langendorff-perfused heart and right ventricle papillary muscle. In permeabilized cardiomyocytes, it was demonstrated to be a potent calcium sensitizer in contrast to its enantiomer, dextrosimendan. It was additionally shown to be a very selective phosphodiesterase (PDE) type-3 inhibitor, the selectivity factor for PDE3 over PDE4 being 10000 for levosimendan. Irrespective of this very selective PDE3 inhibitory property in purified enzyme preparations, the inotropic effect of levosimendan was demonstrated to be mediated mainly through calcium sensitization in the isolated heart as well as the papillary muscle preparations at clinically relevant concentrations. In the isolated Lagendorff-perfused heart, glibenclamide antagonized the levosimendan-induced increase in coronary flow (CF). Therefore, the main vasodilatory mechanism in coronary veins is believed to be the opening of the ATP-sensitive potassium (KATP) channels. In the paced hearts, CF did not increase in parallel with oxygen consumption (MVO2), thus indicating that levosimendan had a direct vasodilatory effect on coronary veins. The pharmacology of levosimendan was clearly different from that of milrinone, which induced an increase in CF in parallel with MVO2. In conclusion, levosimendan was demonstrated to increase cardiac contractility by binding to cardiac troponin C and sensitizing the myofilament contractile proteins to calcium, and further to induce coronary vasodilatation by opening KATP channels in vascular smooth muscle. In addition, the efficiency of the cardiac contraction was shown to be more advantageous when the heart was perfused with levosimendan in comparison to milrinone perfusion.
Resumo:
Sleep deprivation leads to increased subsequent sleep length and depth and to deficits in cognitive performance in humans. In animals extreme sleep deprivation is eventually fatal. The cellular and molecular mechanisms causing the symptoms of sleep deprivation are unclear. This thesis was inspired by the hypothesis that during wakefulness brain energy stores would be depleted, and they would be replenished during sleep. The aim of this thesis was to elucidate the energy metabolic processes taking place in the brain during sleep deprivation. Endogenous brain energy metabolite levels were assessed in vivo in rats and in humans in four separate studies (Studies I-IV). In the first part (Study I) the effects of local energy depletion on brain energy metabolism and sleep were studied in rats with the use of in vivo microdialysis combined with high performance liquid chromatography. Energy depletion induced by 2,4-dinitrophenol infusion into the basal forebrain was comparable to the effects of sleep deprivation: both increased extracellular concentrations of adenosine, lactate, and pyruvate, and elevated subsequent sleep. This result supports the hypothesis of a connection between brain energy metabolism and sleep. The second part involved healthy human subjects (Studies II-IV). Study II aimed to assess the feasibility of applying proton magnetic resonance spectroscopy (1H MRS) to study brain lactate levels during cognitive stimulation. Cognitive stimulation induced an increase in lactate levels in the left inferior frontal gyrus, showing that metabolic imaging of neuronal activity related to cognition is possible with 1H MRS. Study III examined the effects of sleep deprivation and aging on the brain lactate response to cognitive stimulation. No physiologic, cognitive stimulation-induced lactate response appeared in the sleep-deprived and in the aging subjects, which can be interpreted as a sign of malfunctioning of brain energy metabolism. This malfunctioning may contribute to the functional impairment of the frontal cortex both during aging and sleep deprivation. Finally (Study IV), 1H MRS major metabolite levels in the occipital cortex were assessed during sleep deprivation and during photic stimulation. N-acetyl-aspartate (NAA/H2O) decreased during sleep deprivation, supporting the hypothesis of sleep deprivation-induced disturbance in brain energy metabolism. Choline containing compounds (Cho/H2O) decreased during sleep deprivation and recovered to alert levels during photic stimulation, pointing towards changes in membrane metabolism, and giving support to earlier observations of altered brain response to stimulation during sleep deprivation. Based on these findings, it can be concluded that sleep deprivation alters brain energy metabolism. However, the effects of sleep deprivation on brain energy metabolism may vary from one brain area to another. Although an effect of sleep deprivation might not in all cases be detectable in the non-stimulated baseline state, a challenge imposed by cognitive or photic stimulation can reveal significant changes. It can be hypothesized that brain energy metabolism during sleep deprivation is more vulnerable than in the alert state. Changes in brain energy metabolism may participate in the homeostatic regulation of sleep and contribute to the deficits in cognitive performance during sleep deprivation.