972 resultados para Cadmium plating


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper, zinc, manganese, iron, nickel and molybdenum are essential micronutrients for plants. However, when present in excess they may damage the plant or decrease the quality of harvested plant products. Some other heavy metals such as cadmium, lead or mercury are not needed by plants and represent pollutants. The uptake into the roots, the loading into the xylem, the acropetal transport to the shoot with the transpiration stream and the further redistribution in the phloem are crucial for the distribution in aerial plant parts. This review is focused on long-distance transport of heavy metals via xylem and phloem and on interactions between the two transport systems. Phloem transport is the basis for the redistribution within the shoot and for the accumulation in fruits and seeds. Solutes may be transferred from the xylem to the phloem (e.g., in the small bundles in stems of cereals, in minor leaf veins). Nickel is highly phloem-mobile and directed to expanding plant parts. Zinc and to a lesser degree also cadmium are also mobile in the phloem and accumulate in meristems (root tips, shoot apex, axillary buds). Iron and manganese are characterized by poor phloem mobility and are retained in older leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To compare the initial stability and stability after fatigue of three different locking systems (Synthes(®), Stryker(®) and Medartis(®)) for mandibular fixation and reconstruction. METHOD Standard mandible locking plates with identical profile height (1,5 mm), comparable length and screws with identical diameter (2,0 mm) were used. Plates were fixed with six screws according a preparation protocol. Four point bending tests were then performed using artificial bone material to compare their initial stability and failure limit under realistic loading conditions. Loading of the plates was performed using of a servo hydraulic driven testing machine. The stiffness of the implant/bone construct was calculated using a linear regression on the experimental data included in a range of applied moment between 2 Nm and 6 Nm. RESULTS No statistical difference in the elastic stiffness was visible between the three types of plate. However, differences were observed between the systems concerning the maximal load supported. The Stryker and Synthes systems were able to support a significantly higher moment. CONCLUSION For clinical application all systems show good and reliable results. Practical aspects such as handling, possible angulation of screw fixation, possibility of screw/plate removal, etc. may favour one or the other plating system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pelvic discontinuity is a complex problem in revision total hip arthroplasty. Although rare, the incidence is likely to increase due to the ageing population and the increasing number of total hip arthroplasties being performed. The various surgical options available to solve this problem include plating, massive allografts, reconstruction rings, custom triflanged components and tantalum implants. However, the optimal solution remains controversial. None of the known methods completely solves the major obstacles associated with this problem, such as restoration of massive bone loss, implant failure in the short- and long-term and high complication rates. This review discusses the diagnosis, decision making, and treatment options of pelvic discontinuity in revision total hip arthroplasty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directional migration requires robust front/back polarity. We find that fibroblasts treated with platelet-derived growth factor (PDGF) and prepolarized by plating on a fibronectin line substrate exhibit persistent migration for hours. This does not occur in the absence of PDGF or on uniformly coated fibronectin substrates. Persistent migration arises from establishment of two functional modules at cell front and back. At the front, formation of a zone containing podosome-like structures (PLS) dynamically correlates with low RhoA and myosin activity and absence of a contractile lamella. At the back, myosin contractility specifically controls tail retraction with minimal crosstalk to the front module. The PLS zone is maintained in a dynamic steady state that preserves size and position relative to the cell front, allowing for long-term coordination of front and back modules. We propose that front/back uncoupling achieved by the PLS zone is crucial for persistent migration in the absence of directional cues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relaxin is able to inhibit spontaneous, oxytocin-and prostaglandin-driven uterine contractions. The intracellular mechanism of action of relaxin on uterine relaxation had previously been studied using isometrically suspended uterine strips. Since uterine strips contain stroma as well as myometrium, the changes in biochemical parameters induced by relaxin treatment may not occur in the same cell types responsible for the physical changes. In these studies, cultures of enriched populations of rat myometrial cells were used to investigate the effect of relaxin on biochemical and morphological parameters which are related to relaxation.^ Under optimal culture conditions (initial plating density 1 - 1.5 x 10('6)cells/ml, 3 ml/35 mm dish, 2 days culture), enzymatically isolated rat myometrial cells were able to respond to relaxin with cAMP elevation. Relaxin elevated cAMP levels in the presence but not the absence of 0.1 mM methylisobutylxanthine or 0.4 um forskolin in a time- and concentration-dependent manner. In contrast, isoproterenol was able to elevate cAMP levels in the presence and absence of 0.1 mM methylisobutylxanthine.^ Oxytocin treatment caused a decrease in mean cell length and area of myometrial cells in culture which could be considered analogous to contraction. Under optimal culture conditions, relaxin increased myometrial cell length and area (i.e. analogous to relaxation) of oxytocin-treated cells in a time- and concentration-dependent manner. Other relaxants such as isoproterenol and dibutyryl cAMP also increased cell length and area of oxytocin - treated myometrial cells in culture.^ Under optimal culture conditions, relaxin decreased myosin light chain kinase activity in a time-and concentration-dependent manner by increasing the K(,50) of the enzyme for calmodulin (CaM), i.e. decreasing the affinity of the enzyme for CaM. The decrease in the affinity of myosin light chain kinase for CaM may be due to the phosphorylation of the enzyme by cAMP-dependent protein kinase. Relaxin also decreased the Ca('2+)(.)CaM-independent myosin light chain kinase activity to a lesser extent than that of the Ca('2+)(.)CaM-dependent enzyme activity. This was not attributable to a decrease in the affinity of the enzyme for myosin in myometrial cells in culture, in contrast to the finding of such a change following relaxin treatment of uterine strips. Further studies are required to clarify this point.^ There was a temporal association between the effects of relaxin on elevation of cAMP levels in the presence of 0.4 uM forskolin, increase in cell length and decrease in myosin light chain kinase activity. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase $\alpha$ are the molecular targets for two metal ions, Zn$\sp{2+}$ and Cd$\sp{2+},$ and an anticancer drug, F-ara-ATP.^ Human DNA ligases were purified to homogeneity and their AMP binding domains were mapped. Although their AMP-binding domains are similar, there could be difference between the two ligases in their DNA binding domains.^ The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP.^ A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex.^ F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3$\sp\prime$-terminus of DNA nick by DNA polymerase $\alpha.$^ All steps of the DNA ligation reaction were inhibited by Zn$\sp{2+}$ and Cd$\sp{2+}$ in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn$\sp{2+}$ and Cd$\sp{2+}$ showed their contradictory effects on the fidelity of the reaction by human DNA polymerase $\alpha.$ Zn$\sp{2+}$ decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd$\sp{2+}$ increased the frequencies of both misinsertion and mispair extension at very low concentration. Our data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells govern their activities and modulate their interactions with the environment to achieve homeostasis. The heat shock response (HSR) is one of the most well studied fundamental cellular responses to environmental and physiological challenges, resulting in rapid synthesis of heat shock proteins (HSPs), which serve to protect cellular constituents from the deleterious effects of stress. In addition to its role in cytoprotection, the HSR also influences lifespan and is associated with a variety of human diseases including cancer, aging and neurodegenerative disorders. In most eukaryotes, the HSR is primarily mediated by the highly conserved transcription factor HSF1, which recognizes target hsp genes by binding to heat shock elements (HSEs) in their promoters. In recent years, significant efforts have been made to identify small molecules as potential pharmacological activators of HSF1 that could be used for therapeutic benefit in the treatment of human diseases relevant to protein conformation. However, the detailed mechanisms through which these molecules drive HSR activation remain unclear. In this work, I utilized the baker's yeast Saccharomyces cerevisiae as a model system to identify a group of thiol-reactive molecules including oxidants, transition metals and metalloids, and electrophiles, as potent activators of yeast Hsf1. Using an artificial HSE-lacZ reporter and the glucocorticoid receptor system (GR), these diverse thiol-reactive compounds are shown to activate Hsf1 and inhibit Hsp90 chaperone complex activity in a reciprocal, dose-dependent manner. To further understand whether cells sense these reactive compounds through accumulation of unfolded proteins, the proline analog azetidine-2-carboxylic acid (AZC) and protein cross-linker dithiobis(succinimidyl propionate) (DSP) were used to force misfolding of nascent polypeptides and existing cytosolic proteins, respectively. Both unfolding reagents display kinetic HSP induction profiles dissimilar to those generated by thiol-reactive compounds. Moreover, AZC treatment leads to significant cytotoxicity, which is not observed in the presence of the thiol-reactive compounds at the concentrations sufficient to induce Hsf1. Additionally, DSP treatment has little to no effect on Hsp90 functions. Together with the ultracentrifugation analysis of cell lysates that detected no insoluble protein aggregates, my data suggest that at concentrations sufficient to induce Hsf1, thiol-reactive compounds do not induce the HSR via a mechanism based on accumulation of unfolded cytosolic proteins. Another possibility is that thiol-reactive compounds may influence aspects of the protein quality control system such as the ubiquitin-proteasome system (UPS). To address this hypothesis, β-galactosidase reporter fusions were used as model substrates to demonstrate that thiol-reactive compounds do not inhibit ubiquitin activating enzymes (E1) or proteasome activity. Therefore, thiol-reactive compounds do not activate the HSR by inhibiting UPS-dependent protein degradation. I therefore hypothesized that these molecules may directly inactivate protein chaperones, known as repressors of Hsf1. To address this possibility, a thiol-reactive biotin probe was used to demonstrate in vitro that the yeast cytosolic Hsp70 Ssa1, which partners with Hsp90 to repress Hsf1, is specifically modified. Strikingly, mutation of conserved cysteine residues in Ssa1 renders cells insensitive to Hsf1 activation by cadmium and celastrol but not by heat shock. Conversely, substitution with the sulfinic acid and steric bulk mimic aspartic acid led to constitutive activation of Hsf1. Cysteine 303, located in the nucleotide-binding/ATPase domain of Ssa1, was shown to be modified in vivo by a model organic electrophile using Click chemistry technology, verifying that Ssa1 is a direct target for thiol-reactive compounds through adduct formation. Consistently, cadmium pretreatment promoted cells thermotolerance, which is abolished in cells carrying SSA1 cysteine mutant alleles. Taken together, these findings demonstrate that Hsp70 acts as a sensor to induce the cytoprotective heat shock response in response to environmental or endogenously produced thiol-reactive molecules and can discriminate between two distinct environmental stressors.