922 resultados para CRYSTALLINE TELLURIUM
Resumo:
The residual stress distribution that arises in the glass matrix during cooling of a partially crystallized 17.2Na(2)O-32.1CaO-48.1SiO(2)-2.5P(2)O(5) (mol%) bioactive glass-ceramic was measured using the Vickers indentation method proposed by Zeng and Rowcliffe (ZR). The magnitude of the determined residual stress at the crystal/glass boundary was 1/4-1/3 of the values measured using X-ray diffraction (within the crystals) and calculated using Selsing`s model. A correction for the crack geometry factor, assuming a semi-elliptical shape, is proposed and then good agreement between experimental and theoretical values is found. Thus, if the actual crack geometry is taken into account, the indentation technique of ZR can be successfully used. In addition, a numerical model for the calculation of residual stresses that takes into account the hemispherical shape of the crystalline precipitates at a free surface was developed. The result is that near the sample surface, the radial component of the residual stress is increased by 70% in comparison with the residual stress calculated by Selsing`s model.
Resumo:
Bismuth germanate films were prepared by dip coating and spin coating techniques and the dependence of the luminescent properties of the samples on the resin viscosity and deposition technique was investigated. The resin used for the preparation of the films was obtained via Pechini method, employing the precursors Bi(2)O(3) and GeO(2). Citric acid and ethylene glycol were used as chelating and cross-linking agents, respectively. Results from X-ray diffraction and Raman spectroscopy indicated that the films sintered at 700 degrees C for 10 h presented the single crystalline phase Bi(4)Ge(3)O(12). SEM images of the films have shown that homogeneous flat films can be produced by the two techniques investigated. All the samples presented the typical Bi(4)Ge(3)O(12) emission band centred at 505 nm. Films with 3.1 mu m average thickness presented 80% of the luminescence intensity registered for the single crystal at the maximum wavelength. Published by Elsevier B.V.
Resumo:
Layer-by-layer (LBL) films of nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) have been prepared, whose surface charge has been evaluated using surface potential measurements. From adsorption kinetics results, we obtained the immersion time of similar to 40 s, which was used to assemble layers of NiTsPc. The effect of gold (Au) and aluminum (Al) electrodes on the charge behavior was examined. We found that the surface potential (i.e. surface charge) was inverted each time a layer of PAH was alternated with another of NiTsPc molecules for the two types of electrodes, which was attributed to charge overcompensation between positive charges of PAH molecules, and negative charges from NiTsPc molecules. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new polymeric zinc(II) complex with thiophene-2-carboxylic acid (-tpc) of composition [Zn2(C20H12O8S4)]n was obtained and structurally characterized by X-ray diffraction, thermal analysis, nuclear magnetic resonance (NMR), and infrared spectroscopies. Upfield shift in the 1H-NMR spectrum is explained by the crystalline structure, which shows the thiophene rings overlapping each other in parallel pairs. The compound crystallizes in the monoclinic system, space group P21/c, with a = 9.7074(4) angstrom, b = 13.5227(3) angstrom, c = 18.9735(7) angstrom, = 95.797(10)degrees, and Z = 4. Three -tpc groups bridge between two Zn(II) ions through oxygens and the fourth one bridges between one of these ions and the third one, symmetry related by a twofold screw axis. This arrangement gives rise to infinite chains along the crystallographic a direction. The metal atoms display an approximate tetrahedral configuration. The complex is insoluble in water, ethanol, and acetone, but soluble in dimethyl sulfoxide.
Resumo:
The microphase structure of a series of polystyrene-b-polyethylene oxide-b-polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid-state NMR, DSC, wide and small angle X-ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethyleneoxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and (1)H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48:55-64,2010
Resumo:
This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,)-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly [(9,9-dioctyl- 2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)- 1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These Structures were determined by wide-angle X-ray scattering (WAXS) measurements, Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of similar to 4.5 angstrom and laterally spaced by about similar to 16 angstrom, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in them aggregated Structures, Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, Our data explain many features of the temperature dependence of the photoluminescence of these two polymers.
Resumo:
A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh(3)), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)(2), the palladium(II) thiosaccharinate, Pd(tsac)(2) (tsac: thiosaccharinate anion) (1) was prepared. The reaction of I with PPh(3), dppm, and dppe leads to the mononuclear species Pd(tsac)(2)(PPh(3))(2)center dot MeCN (2), [Pd(tsac)(2)(dppm)] (3), Pd(tsac)(2)(dppm)(2) (4), and [Pd(tsac)(2)(dppe)]center dot MeCN (5). Compounds 2, 4, and 5 have been prepared also by the reaction of Pd(acac)(2) with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3, and 5 have been studied by X-ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P2(1)/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) angstrom, beta = 91.284(1)degrees, and Z = 8 molecules per unit cell, and complex 5 in P2(1)/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) angstrom, beta = 107.996(7)degrees, and Z = 4. In compounds 3 and 5, the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the Pd(II) atom. The molecular structure of complex 3 is the first reported for a mononuclear Pd(II)-dppm-thionate system.
Resumo:
This work reports the structural and spectroscopy characterization of poly(styrene sulfonate) (PSS) films doped with neodymium (Nd) ions. Nd-PSS films were processed using the acid of poly(styrene sulfonate) - H-PSS and neodymium nitrate - Nd(NO(3))(3); the maximum incorporation of Nd ions in the polymeric matrix was equal 19.3%. The absorption in the UV-Vis-NIR spectral region presents typical electronic transitions of Nd 3, ions, with well resolved peaks. The infrared spectra present the transition bands of PSS with characteristic line shape broadening, and the presence of vibrational modes of N-O groups in the range of 1400-720 cm(-1), prove the permanence of Nd(NO(3))(x), with x = 1, 2 and/or 3. in the H-PSS matrix. UV-Vis site selective photoluminescence data indicate that the incorporation of Nd 31 introduces a blue shift in PSS emission (325-800 nm), decreasing the interaction between adjacent PSS lateral groups (aromatic rings). Nd(3+) reabsorption and energy transfer effects between the PSS matrix and Nd(3+) were also observed. The IR emission of Nd-PSS films at 1076 rim ((4)F(3/2) -> (4)I(11/2)) present constant efficiency, independent on Nd(3+) concentration. The Judd-Ofelt theory was employed to analyze radiative properties. The excitation spectra prove the energy transfer between the polymeric matrix and Nd(3+). Complex impedance data was used to probe relaxation processes during the charge transport within the polymeric matrix. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The existence of conducting islands in polyaniline films has long been proposed in the literature, which would be consistent with conducting mechanisms based on hopping. Obtaining direct evidence of conducting islands, however, is not straightforward. In this paper, conducting islands were visualized in poly(o-ethoxyaniline) (POEA) films prepared at low pH, using Transmission Electron Microscopy (TEM) and atomic force spectroscopy (AFS). The size of the islands varied between 67 and 470 angstrom for a pH=3.0, with a larger average being obtained with AFS, probably due to the finite size effect of the atomic force microscopy tip. In AFS, the conducting islands were denoted by regions with repulsive forces due to the double-layer forces. On the basis of X-ray diffraction (XRD) patterns for POEA in the powder form, we infer that the conducting islands are crystalline, and therefore a POEA film is believed to consist of conducting islands dispersed in an insulating, amorphous matrix. From conductivity measurements we inferred the charge transport to be governed by a typical quasi-one dimensional variable range hopping (VRH) mechanism.
Resumo:
This paper reports on the effect of glass ceramic silica matrix on [CrO4](4-) and Cr2O3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 degrees C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7 mu m) and other in the visible region (0.6-0.7 mu m) assigned to Cr4+ and to Cr3+, respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO4](4-) where Cr4+ substitutes for Si4+ and also hexacoordinated Cr3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful toot for detecting the two chromium optical centers in the glass ceramic silica. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Lithium nitrate has been used to prevent and to mediate the expansion caused by alkali-silica reaction (ASR). However, there is limited information on how it affects the existing reaction products caused by ASR. The aim of the present work is to determine the modifications caused by the LiNO3 treatment on the structure of the gel produced by ASR. ASR gel samples obtained from a concrete dam were exposed to an aqueous solution of lithium nitrate and sodium hydroxide with molar LiNO3/NaOH = 0.74, and the resulting products were analyzed by X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance of Si-29, Na-23, and Li-7. The treatment of the gel samples produces significant structural modifications in ASR products. A new amorphous silicate compound incorporating Li+ ions is formed, with an average silicate network that can be described as linear in contrast with the layered structure of the original gel. This elimination of the layered structure after the Li-based treatments may be related to the reduction of the tendency of the gel to expand. Also, several crystalline compounds containing potassium indicate the release of this species from the original ASR gel.
Resumo:
Five new complexes of general formula: [Ni(RSO(2)N=CS(2))(dppe)], where R = C(6)H(5) (1), 4-ClC(6)H(4) (2), 4-BrC(6)H(4) (3), 4-IC(6)H(4) (4) and dppe = 1,2-bis(diphenylphosphino) ethane and [Ni(4-IC(6)H(4)SO(2)N=CS(2))(PPh(3))(2)] (5), where PPh3 = triphenylphosphine, were obtained in crystalline form by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate K(2)(RSO(2)N=CS(2)) and dppe or PPh(3) with nickel(II) chloride in ethanol/water. The elemental analyses and the IR, (1)H NMR, (13)C NMR and (31)P NMR spectra are consistent with the formation of the square planar nickel(II) complexes with mixed ligands. All complexes were also characterized by X-ray diffraction techniques and present a distorted cis-NiS(2)P(2) square-planar configuration around the Ni atom. Quantum chemical calculations reproduced the crystallographic structures and are in accord with the spectroscopic data. Rare C-H center dot center dot center dot Ni intramolecular short contact interactions were observed in the complexes 1-5. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Ba0.77Ca0.23TiO3 (BCT23) nanometric powders, synthesized by the modified Pechini method, were used as precursor to produce thick films (50-130 mu m) employing the electrophoretic deposition (EPD) technique. The BCT23 powder presented a single crystalline phase with an average particle size and a crystallite size of similar to 60 nm and similar to 20 nm, respectively, when calcined at 800 degrees C/2h. BCT23 thick films were deposited on platinum substrates starting from different suspensions prepared by dispersion of the powder into: isopropyl alcohol (IPA) or a mixture of acetylacetone (Acac) and ethanol (EtOH) (1:1, volumetric ratio). A milling process was used to deagglomerate the powders in order to increase the suspension stability and improving the deposition. Dense and crack free thick films with uniform microstructure were obtained after sintering at 1300 degrees C/2 h from Acac+EtOH solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Mebendazole hydrochloride [(5-benzoyl-1H-benzimidazole-2-yl)-carbamic acid methyl ester hydrochloride, MBZ.HCl], a new stable salt of mebendazole (MBZ), has been synthesized and characterized. It can easily be obtained from recrystallization of forms A, B, or C of MBZ in diverse solvents with the addition of hydrochloric acid solution. Crystallographic data reveals that the particular conformation adopted by the carbamic group contributes to the stability of the network. The crystal packing is stabilized by the presence of three N-H...Cl intermolecular interactions that form chains along the b axis. The XRD analyses of the three crystalline habits found in the crystallization process (square-based pyramids, pseudohexagonal plates, and prismatic) show equivalent diffraction patterns. The vibrational behavior is consistent with crystal structure. The most important functional groups show shifts to lower or higher frequencies in relation to the MBZ polymorphs. The thermal study on MBZ center dot HCI indicates that the compound is stable up to 160 degrees C approximately. Decomposition occurs in four steps. In the first step the HCl group is eliminated, and after that the remaining MBZ polymorph A decomposes in three steps, as happens with polymorphs B and C. (C) 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:542-552, 2008.
Resumo:
New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh(3))] (M Pd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H(2)L(1a) and H(2)L(1b), and benzoylacetone, H(2)L(2a) and H(2)L(2b). The new complexes [Pt(L(1a))(PPh(3))] (1), [Pd(L(1a))(PPh(3))] (2), [Pt(L(1b))(PPh(3))] (3), [Pd(L(1b))(PPh(3))] (4), [Pt(L(2a))(PPh(3))] (5), [Pd(L(2a))(PPh(3))] (6), [Pt(L(2b))(PPh(3))] (7) and [Pd(L(2b))(PPh(3))] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR ((1)H and (31)P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H(2)L(1a) and H(2)L(1b) ligands, H(2)L(2a) and H(2)L(2b) assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H2L2a and H2L2b suffer ring-opening reaction, coordinating in the same manner as H(2)L(1a) and H(2)L(1b), deprotonated and in O,N,S-tridentate mode to the (MPPh(3))(2+) moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC(50) values ranging from 7.8 to 18.7 mu M, while the ligand H(2)L(2a) presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole. (C) 2010 Elsevier Inc. All rights reserved.