961 resultados para CONTINUOUS-VARIABLES
Resumo:
A method for simulation of acoustical bores, useful in the context of sound synthesis by physical modeling of woodwind instruments, is presented. As with previously developed methods, such as digital waveguide modeling (DWM) [Smith, Comput. Music J. 16, pp 74-91 (1992)] and the multi convolution algorithm (MCA) [Martinez et al., J. Acoust. Soc. Am. 84, pp 1620-1627 (1988)], the approach is based on a one-dimensional model of wave propagation in the bore. Both the DWM method and the MCA explicitly compute the transmission and reflection of wave variables that represent actual traveling pressure waves. The method presented in this report, the wave digital modeling (WDM) method, avoids the typical limitations associated with these methods by using a more general definition of the wave variables. An efficient and spatially modular discrete-time model is constructed from the digital representations of elemental bore units such as cylindrical sections, conical sections, and toneholes. Frequency-dependent phenomena, such as boundary losses, are approximated with digital filters. The stability of a simulation of a complete acoustic bore is investigated empirically. Results of the simulation of a full clarinet show that a very good concordance with classic transmission-line theory is obtained.
Resumo:
This study presents a reproducible, cost-effective in vitro encrustation model and, furthermore, describes the effects of components of the artificial urine and the presence of agents that modify the action of urease on encrustation on commercially available ureteral stents. The encrustation model involved the use of small-volume reactors (700 mL) containing artificial urine and employing an orbital incubator (at 37 degrees C) to ensure controlled stirring. The artificial urine contained sources of calcium and magnesium (both as chlorides), albumin and urease. Alteration of the ratio (% w/w) of calcium salt to magnesium salt affected the mass of encrustation, with the greatest encrustation noted whenever magnesium was excluded from the artificial urine. Increasing the concentration of albumin, designed to mimic the presence of protein in urine, significantly decreased the mass of both calcium and magnesium encrustation until a plateau was observed. Finally, exclusion of urease from the artificial urine significantly reduced encrustation due to the indirect effects of this enzyme on pH. Inclusion of the urease inhibitor, acetohydroxamic acid, or urease substrates (methylurea or ethylurea) into the artificial medium markedly reduced encrustation on ureteral stents. In conclusion, this study has described the design of a reproducible, cost-effective in vitro encrustation model. Encrustation was markedly reduced on biomaterials by the inclusion of agents that modify the action of urease. These agents may, therefore, offer a novel clinical approach to the control of encrustation on urological medical devices. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Electroless nickel-phosphorus deposits with 5-8 wt% P and 3-5 wt% P were analysed for the effects of continuous heating on the crystallization kinetics and phase transformation behaviour of the deposits. The as-deposited coatings consist of a mixture of amorphous and microcrystalline nickel phases, featuring in their X-ray diffraction patterns. Continuous heating processes to 300C-800C at 20C/min were carried out on the deposits in a differential scanning calorimetric apparatus. The subsequent X-ray diffraction analyses show that the sequence of phase transformation process was: amorphous phase + microcrystalline nickel, f.c.c. nickel + Ni3P stable phases. Preferred orientation of nickel {200} plane developed in the deposits after the heating processes. Differential scanning calorimetry of the deposits indicates that the crystallization temperatures increased with decreasing phosphorus content, and increasing heating rate. Crystallization activation energies of the deposits (230 and 322 kJ/mol, respectively) were calculated using the peak temperatures of crystallization process, from the differential scanning calorimetric curves at the heating rates ranging from 5 to 50C/min. It was found that the deposit with lower phosphorus content has higher activation energy.
Resumo:
We establish a mapping between a continuous-variable (CV) quantum system and a discrete quantum system of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.
Resumo:
Measures of entanglement, fidelity, and purity are basic yardsticks in quantum-information processing. We propose how to implement these measures using linear devices and homodyne detectors for continuous-variable Gaussian states. In particular, the test of entanglement becomes simple with some prior knowledge that is relevant to current experiments.