996 resultados para CO2-laser


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a compact solid-state laser based on leaky mode propagation from a dye-doped polymer free-standing film waveguide. The edge emitted spectrum clearly indicated the existence of periodic resonant modes. The reflections from the lateral faces of the free-standing film provided the optical feedback thus giving rise to a Fabry–Perot like optical cavity. This together with the guidance through the gain medium gave rise to intense narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line with FWHM ∼0.4 nmwas observed at 576.5 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature