962 resultados para CENTRAL GRANULAR CELL ODONTOGENIC TUMOR
Resumo:
Cell surface proteins are excellent targets for diagnostic and therapeutic interventions. By using bioinformatics tools, we generated a catalog of 3,702 transmembrane proteins located at the surface of human cells (human cell surfaceome). We explored the genetic diversity of the human cell surfaceome at different levels, including the distribution of polymorphisms, conservation among eukaryotic species, and patterns of gene expression. By integrating expression information from a variety of sources, we were able to identify surfaceome genes with a restricted expression in normal tissues and/or differential expression in tumors, important characteristics for putative tumor targets. A high-throughput and efficient quantitative real-time PCR approach was used to validate 593 surfaceome genes selected on the basis of their expression pattern in normal and tumor samples. A number of candidates were identified as potential diagnostic and therapeutic targets for colorectal tumors and glioblastoma. Several candidate genes were also identified as coding for cell surface cancer/testis antigens. The human cell surfaceome will serve as a reference for further studies aimed at characterizing tumor targets at the surface of human cells.
Resumo:
Annexin A1 (ANXA1) is a soluble cytoplasmic protein, moving to membranes when calcium levels are elevated. ANXA1 has also been shown to move to the nucleus or outside the cells, depending on tyrosine-kinase signalling, thus interfering in cytoskeletal organization and cell differentiation, mostly in inflammatory and neoplastic processes. The aim was to investigate subcellular patterns of immunohistochemical expression of ANXA1 in neoplastic and non-neoplastic samples from patients with laryngeal squamous cell carcinomas (LSCC), to elucidate the role of ANXA1 in laryngeal carcinogenesis. Serial analysis of gene expression experiments detected reduced expression of ANXA1 gene in LSCC compared with the corresponding non-neoplastic margins. Quantitative polymerase chain reaction confirmed ANXA1 low expression in 15 LSCC and eight matched normal samples. Thus, we investigated subcellular patterns of immunohistochemical expression of ANXA1 in 241 paraffin-embedded samples from 95 patients with LSCC. The results showed ANXA1 down-regulation in dysplastic, tumourous and metastatic lesions and provided evidence for the progressive migration of ANXA1 from the nucleus towards the membrane during laryngeal tumorigenesis. ANXA1 dysregulation was observed early in laryngeal carcinogenesis, in intra-epithelial neoplasms; it was not found related to prognostic parameters, such as nodal metastases.
Resumo:
Objectives Microsatellite instability (MSI) induction by alkylating agent-based chemotherapy (ACHT) may underlie both tumor resistance to chemotherapy and secondary leukaemias in cancer patients. We investigated if ACHT could induce MSI in tumor-derived plasma-circulating DNA (pfDNA) and in normal peripheral blood mononuclear (PBMN) cells. We also evaluated if amifostine could interfere with this process in an in-vitro model. Methods MSI was determined in pfDNA, PBMN cells and urine cell-free DNA (ufDNA) of 33 breast cancer patients before and after ACHT. MCF-7 cells and PBMN from normal donors were exposed in vitro to melphalan, with or without amifostine. Results We observed at least one MSI event in PBMN cells, pfDNA or ufDNA of 87, 80 and 80% of patients, respectively. In vitro, melphalan induced MSI in both MCF-7 and normal PBMN cells. In PBMN cells, ACHT-induced MSI occurred together with a significant decrease in the expression of the DNA mismatch repair gene hMSH2. Amifostine decreased hMSH2 expression and also prevented MSI induction only in normal PBMN cells. Conclusions ACHT induced MSI in PBMN cells and in tumour-derived pfDNA. Because of its protective effect against ACHT induction of MSI in normal PBMN cells in vitro, amifostine may be a potential agent for preventing secondary leukaemias in patients exposed to ACHT.
Resumo:
Chemokines are chemoattractant cytokines involved in the immune response of a wide variety of diseases. There are few studies assessing their role in opportunistic infections in HIV-infected patients. In this study, we measured CC and CXC chemokines in cerebrospinal fluid (CSF) samples obtained from 40 HIV-infected patients with or without opportunistic infections of the central nervous system (CNS). CSF samples were also analyzed for quantification of total protein, cell count and HIV-1 RNA. HIV+ patients with cryptococcal meningitis had higher levels of CCL2, CCL3, CCL5, CXCL9 and CXCL10 when compared to patients without opportunistic neurological infections. Furthermore, HIV+ patients with associated cryptococcal meningitis had higher levels of CCL3, CXCL9 and CXCL10 when compared to HIV+ patients with associated toxoplasmic encephalitis. CCL3 and CXCL9 levels were positively correlated with CSF HIV-1 RNA levels, CSF protein concentration, and CSF cell count. CXCL10 level was correlated with the CSF viral load and the CSF cell count and CCL5 level was correlated with the CSF cell count. In conclusion, the profile of chemokines in CSF of HIV patients may differ according to the modality of the presented opportunistic infection and according to other biological markers, such as viral load in CSF. These differences are probably related to different patterns of neuroinflammatory responses displayed by patients with different opportunistic neurological infections. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Retinal neurons with distinct dendritic morphologies are likely to comprise different cell types, subject to three important caveats. First, it is necessary to avoid creating “artificial” cell types based on arbitrary criteria—for example, the presence of two or three primary dendrites. Second, it is essential to take into account changes in morphology with retinal eccentricity and cell density. Third, the retina contains imperfections like any natural system and a significant number of retinal neurons display aberrant morphologies or make aberrant connections that are not typical of the population as a whole. Many types of retinal ganglion cells show diverse patterns of tracer coupling, with the simplest pattern represented by the homologous coupling shown by On-Off direction-selective (DS) ganglion cells in the rabbit retina. Neighboring DS ganglion cells with a common preferred direction have regularly spaced somata and territorial dendritic fields, whereas DS ganglion cells with different preferred directions may have closely spaced somata and overlapping dendritic fields.
Resumo:
PURPOSE: To analyze the effects of variations in femtosecond laser energy level on corneal stromal cell death. and inflammatory cell influx following flap creation in a rabbit model. METHODS: Eighteen rabbits were stratified in three different groups according to level of energy applied for flap creation (six animals per group). Three different energy levels were chosen for both the lamellar and side cut; 2.7 mu J (high energy), 1.6 mu J (intermediate energy), and 0.5 mu J (low energy) with a 60 kHz, model II, femtosecond laser (IntraLase). The opposite eye of each rabbit served as a control. At the 24-hour time point after surgery, all rabbits were euthanized and the comeoscleral rims were analyzed for the levels of cell death and inflammatory cell influx with the terminal uridine deoxynucleotidyl transferase dUTP-nick end labeling (TUNEL) assay and immunocytochemistry for monocyte marker CD11b, respectively. RESULTS: The high energy group (31.9 +/- 7.1 [standard error of mean (SEM) 2.9]) had significantly more TUNEL positive cells in the central flap compared to the intermediate (22.2 +/- 1.9 [SEM 0.8], P=.004), low (17.9 +/- 4.0 [SEM 1.6], P <= .001), and control eye (0.06 +/- 0.02 [SEM 0.009], P <= .001) groups. The intermediate and low energy groups also had significantly more TUNEL positive cells than the control groups (P <= .001). The difference between the intermediate and low energy levels was not significant (P=.56). The mean for CD11b-positive cells/400x field at the flap edge was 26.1 +/- 29.3 (SEM 11.9), 5.8 +/- 4.1 (SEM 1.6), 1.6 +/- 4.1 (SEM 1.6), and 0.005 +/- 0.01 (SEM 0.005) for high energy, intermediate energy, low energy, and control groups, respectively. Only the intermediate energy group showed statistically more inflammatory cells than control eyes (P = .015), most likely due to variability between eyes. CONCLUSIONS: Higher energy levels trigger greater cell death when the femtosecond laser is used to create corneal flaps: Greater corneal inflammatory cell infiltration is observed with higher femtosecond laser energy levels. [J Refract Surg. 2009;25:869-874.] doi:10.3928/1081597X-20090917-08
Resumo:
A 59-year-old woman presented with a large mediastinal mass. At thoracotomy, the mass was found tightly adherent to the esophageal wall and right lower lobe of the lung. Histological examination showed a solid tumor composed of closely packed nests of cells with clear and eosinophilic cytoplasm, which were strongly and diffusely positive for S 100 protein but negative for HMB45 and Melan-A. The diagnosis of clear cell sarcoma was supported by demonstrating the presence of an EWS gene rearrangement by fluorescence in situ hybridization. There was no evidence that this lesion represented metastatic disease. To the best of our knowledge, primary mediastinal clear cell sarcoma has not been previously reported in the literature. We present the case and discuss the differential diagnosis. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In order to quantify presence of residual BCC in patients with histologic positive margins after the first excison and to correlate the presence of residual tumor in re-excised lesions with the location of the positive margin on the first excision, a retrospective evaluation of 2053 surgically treated BCC was performed. Only 38.3% of the re-excised lesions showed residual tumor. In the group of re-excised lesions where residual BCC was found, 13% had lateral positive margin in the first excision, 39% had deep positive margin and 48% had both lateral and deep positive margins. In the group of re-excised lesions where no residual BCC was found, 49% of the primary excised lesions had lateral positive margin, 32% had deep positive margin and 19% had both deep and lateral positive margins. The association between residual tumor and positive margins was statistically significant (p = 0.01). Our findings confirm that presence of residual tumour is more likely when both lateral and deep margins are compromised.
Resumo:
Eukaryotic translation initiation factor 5A (eIF5A) has a unique character: the presence of an unusual amino acid, hypusine, which is formed by post-translational modifications. Even before the identification of hypusination in eIF5A, the correlation between hypusine formation and protein synthesis, shifting cell proliferation rates, had already been observed. Embryogenesis is a complex process in which cellular proliferation and differentiation are intense. In spite of the fact that many studies have described possible functions for eIF5A, its precise role is under investigation, and to date nothing has been reported about its participation in embryonic development. In this study we show that eIF5A is expressed at all mouse embryonic post-implantation stages with increase in eIF5A mRNA and protein expression levels between embryonic days E10.5 and E13.5. Immunohistochemistry revealed the ubiquitous presence of eIF5A in embryonic tissues and organs at E13.5 day. Interestingly, stronger immunoreactivity to eIF5A was observed in the stomodeum, liver, ectoderm, heart, and eye, and the central nervous system; regions which are known to undergo active differentiation at this stage, suggesting a role of eIF5A in differentiation events. Expression analyses of MyoD, a myogenic transcription factor, revealed a significantly higher expression from day E12.5 on, both at the mRNA and the protein levels suggesting a possible correlation to eIF5A. Accordingly, we next evidenced that inhibiting eIF5A hypusination in mouse myoblast C2C12 cells impairs their differentiation into myotubes and decreases MyoD transcript levels. Those results point to a new functional role for eIF5A, relating it to embryogenesis, development, and cell differentiation. J. Cell. Physiol. 225: 500-505, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
In order to investigate the differential ALCAM, ICAM-1 and VCAM-1 adhesion molecules mRNA expression and the blood-brain barrier (BBB) permeability in C57BL/6 and BALB/c mice in Toxoplasma gondii infection, animals were infected with ME-49 strain. It was observed higher ALCAM on day 9 and VCAM-1 expression on days 9 and 14 of infection in the central nervous system (CNS) of C57BL/6 compared to BALB/c mice. The expression of ICAM-1 was high and similar in the CNS of both lineages of infected mice. In addition, C57BL/6 presented higher BBB permeability and higher IFN-gamma and iNOS expression in the CNS compared to BALB/c mice. The CNS of C578L/6 mice presented elevated tissue pathology and parasitism. In conclusion, our data suggest that the higher adhesion molecules expression and higher BBB permeability contributed to the major inflammatory cell infiltration into the CNS of C57BL/6 mice that was not efficient to control the parasite. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In the last decades, the incidence of histoplasmosis, a pulmonary fungal disease caused by Histoplasma capsulatum, has increased worldwide. In this context, vaccines for the prevention of this infection or therapies are necessary. Cell-free antigens (CFAgs) from H. capsulatum when administered for murine immunization purposes are able to confer protection and control of the infection, since they activate cellular immunity. However the most of vaccination procedures need several anti, gens administrations and immunoadjuvants, which are not approved for use in humans. The aim of this study was to develop and characterize a vaccination approach using biodegradable PLGA microspheres (MS) that could allow the controlled and/or sustained release of the encapsulated antigens from H. capsulatum. CFAgs-loaded MS presented a size less than 10 mu m, were marked engulfed by bone marrow-derived macrophages (BMDM phi) and induced the nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production by these cells. Our data show that CFAgs-loaded MS induce cell activation, suggesting an immunostimulant effect to be further investigated during immunization procedures. CFAgs-loaded MS present potential to be used as vaccine in order to confer protection against H. capsulatum infection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chemokines comprise a structurally related family of cytokines that regulate leukocyte trafficking. Because infection with Toxoplasma gondii can induce an important inflammatory reaction that, if left uncontrolled, can lead to death, we investigated the role of the chemokine receptor CCR2 in T gondii infection. We orally infected CCR2(-/-) mice with five ME-49 T gondii cysts and monitored morbidity, survival, and immune response thereafter. The CCR2(-/-) mice displayed higher susceptibility to infection as all mice died on day 28 after infection. Despite similar Th1 responses, a more evident anti-inflammatory response was induced in the peripheral organs of CCR2(-/-) mice compared with wild-type C57BL/6 mice. Additionally, CCR2-/- mice presented greater parasitism and a milder inflammatory reaction in their peripheral organs with lesser CD4(+) and MAC-1(+) and greater CD8(+) cell migration. The parasite load decreased in these organs in CCR2(-/-) mice but remained uncontrolled in the central nervous system. Additionally, we observed down-regulated inducible nitric oxide synthase expression in peripheral organs from CCR2(-/-) mice that was associated with a small nitric oxide production by spleen macrophages. In conclusion, in the absence of CCR2, another mechanism is activated to control tissue parasitism in peripheral organs. Nevertheless, CCR2 is essential for the activation of microbicidal mediators that control T gondii replication in the central nervous system.
Resumo:
A mononuclear phagocyte derived from B1b cells (B1CDP) has been described. As these cells migrate from the peritoneal cavity to non-specific inflammatory lesion sites and are highly phagocytic via Fc and mannose receptors, their microbicidal ability of these cells was investigated using the Coxiella burnetii cell infection model in vitro. In this report, the pattern of infection and C burnetii phase II survival in B1CDP phagosomes was compared with the pattern of infection of peritoneal macrophages from Xid mice (PM phi) and bone marrow derived macrophages (BMM phi). Infection was assessed by determining the large parasitophorous vacuole formation, the relative focus forming units and the quantification of DAPI (4`,6-diamino-2-phenylindole) fluorescence images acquired by confocal microscopy. When compared to macrophages, B1CDP are more permissive to the bacterial infection and less effective to kill them. Further, results suggest that IL-10 secreted by B1 cells are involved in their susceptibility to infection by C burnetti, since B1CDP from IL-10 KO mice are more competent to control C. burnetii infection than cells from wild type mice. These data contribute further to characterize B1CDP as a novel mononuclear phagocyte. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 61% for 1 Gy and was completely reduced at 16 Gy. By performing the microarray technique, 859 cDNA clones were analyzed. The Significance Analysis of Microarray algorithm indicated 196 significant expressed genes (false discovery rate (FDR) = 0.42%): 67 down-regulated and 97 up-regulated genes, which belong to several classes: metabolism, adhesion/cytoskeleton, signal transduction, cell cycle/apoptosis, membrane transport, DNA repair/DNA damage signaling, transcription factor, intracellular signaling, and RNA processing. Differential expression patterns of five selected genes (HSPA9B, INPP5A, PIP5K1A, FANCG, and TPP2) observed by the microarray analysis were further confirmed by the quantitative real time RT-PCR method, which demonstrated an up-regulation status of those genes. These results indicate a broad spectrum of biological processes (which may reflect the radio-resistance of U343 cells) that were altered in irradiated glioma cells, so as to guarantee cell survival.
Resumo:
We have performed cDNA microarray analyses to identify gene expression differences between highly invasive glioblastoma multiforme (GBM) and typically benign pilocytic astrocytomas (PA). Despite the significant clinical and pathological differences between the 2 tumor types, only 63 genes were found to exhibit 2-fold or greater overexpression in GBM as compared to PA. Forty percent of these genes are related to the regulation of the cell cycle and mitosis. QT-PCR validation of 6 overexpressed genes: MELK, AUKB, ASPM, PRC1, IL13RA2 and KIAA0101 confirmed at least a 5-fold increase in the average expression levels in GBM. Maternal embryonic leucine zipper kinase (MELK) exhibited the most statistically significant difference. A more detailed investigation of MELK expression was undertaken to study its oncogenic relevance. In the examination of more than 100 tumors of the central nervous system, we found progressively higher expression of MELK with astrocytoma grade and a noteworthy uniformity of high level expression in GBM. Similar level of overexpression was also observed in medulloblastoma. We found neither gene promoter hypomethylation nor amplification to be a factor in MELK expression, but were able to demonstrate that MELK knockdown in malignant astrocytoma cell lines caused a reduction in proliferation and anchorage-independent growth in in vitro assays. Our results indicate that GBM and PA differ by the expression of surprisingly few genes. Among them, MELK correlated with malignancy grade in astrocytomas and represents a therapeutic target for the management of the most frequent brain tumors in adult and children. (C) 2007 Wiley-Liss, Inc.