980 resultados para CELL STIMULATORY FACTOR
Resumo:
The aim of the study was to determine whether there is any relationship between the presence of removable dentures and squamous cell carcinoma of the anterior two thirds of the tongue in a Portuguese population. A retrospective cross-sectional study was conducted on patients with a biopsy-proven diagnosis of squamous cell carcinoma of the tongue, who were seen and treated at the Department of Head and Neck Surgery of the Portuguese Institute of Oncology 'Francisco Gentil', Lisbon, Portugal, during a 3-year period. Several factors were examined: gender, use of removable dentures, age, location of the lesion, and alcohol and tobacco consumption. One hundred and six cases were selected from the initial 151 cases, with a male:female ratio of 3:1 and the lateral borders being the most commonly affected site. The prevalence in both genders was between the sixth and seventh decade of life. Men were more likely to consume alcohol and tobacco than women, and no relationship was observed between denture use and presence of carcinoma of the tongue. In light of the data obtained, it may be considered that female use of a denture plays an important role, but it cannot be identified as a remarkable etiologic factor.
Resumo:
FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino acid substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned.
Resumo:
Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.
Resumo:
Background: The relevance of immune-endocrine interactions to the regulation of ovarian function in teleosts is virtually unexplored. As part of the innate immune response during infection, a number of cytokines such as tumor necrosis factor alpha (TNF alpha) and other immune factors, are produced and act on the reproductive system. However, TNF alpha is also an important physiological player in the ovulatory process in mammals. In the present study, we have examined for the first time the effects of TNF alpha in vitro in preovulatory ovarian follicles of a teleost fish, the brown trout (Salmo trutta). Methods: To determine the in vivo regulation of TNF alpha expression in the ovary, preovulatory brook trout (Salvelinus fontinalis) were injected intraperitoneally with either saline or bacterial lipopolysaccharide (LPS). In control and recombinant trout TNF alpha (rtTNF alpha)-treated brown trout granulosa cells, we examined the percentage of apoptosis by flow cytometry analysis and cell viability by propidium iodide (PI) staining. Furthermore, we determined the in vitro effects of rtTNF alpha on follicle contraction and testosterone production in preovulatory brown trout ovarian follicles. In addition, we analyzed the gene expression profiles of control and rtTNF alpha-treated ovarian tissue by microarray and real-time PCR (qPCR) analyses. Results: LPS administration in vivo causes a significant induction of the ovarian expression of TNF alpha. Treatment with rtTNF alpha induces granulosa cell apoptosis, decreases granulosa cell viability and stimulates the expression of genes known to be involved in the normal ovulatory process in trout. In addition, rtTNF alpha causes a significant increase in follicle contraction and testosterone production. Also, using a salmonid-specific microarray platform (SFA2.0 immunochip) we observed that rtTNF alpha induces the expression of genes known to be involved in inflammation, proteolysis and tissue remodeling. Furthermore, the expression of kallikrein, TOP-2, serine protease 23 and ADAM 22, genes that have been postulated to be involved in proteolytic and tissue remodeling processes during ovulation in trout, increases in follicles incubated in the presence of rtTNF alpha. Conclusions In view of these results, we propose that TNF alpha could have an important role in the biomechanics of follicle weakening, ovarian rupture and oocyte expulsion during ovulation in trout, primarily through its stimulation of follicular cell apoptosis and the expression of genes involved in follicle wall proteolysis and contraction.
Resumo:
Angiogenesis is an important process in chronic inflammatory diseases. We observed that sera from patients with systemic vasculitis stimulated angiogenesis in an in vitro model using human umbilical vein endothelial cells cultured on a basement membrane (Matrigel) substrate. After 40% ammonium sulfate precipitation, angiogenic activity remained in the low molecular weight fraction and could be inactivated by heat. SDS-page of serum FPLC fractions exhibiting maximal angiogenic activity demonstrated two prominent species of 45 and 16-20 kD in patients' sera. These bands were much less apparent in sera obtained from control subjects. Amino-terminal sequencing of the 45-kD protein demonstrated that it was haptoglobin. Purified haptoglobin stimulated angiogenesis in a dose-dependent manner. The angiogenic activity of vasculitis patients' sera was partially inhibited by an antihaptoglobin antibody. Furthermore, serum haptoglobin levels in vasculitis patients correlated both with disease and angiogenic activity. Haptoglobin angiogenic activity was confirmed in two in vivo models using an implanted disc and a subcutaneous injection of basement membrane. Stimulation of angiogenesis is a newly recognized biological function of haptoglobin. The increased levels of haptoglobin found in chronic inflammatory conditions may play an important role in tissue repair. In systemic vasculitis, haptoglobin might also compensate for ischemia by promoting development of collateral vessels.
Resumo:
The Ca(2+)-regulated calcineurin/nuclear factor of activated T cells (NFAT) cascade controls alternative pathways of T-cell activation and peripheral tolerance. Here, we describe reduction of NFATc2 mRNA expression in the lungs of patients with bronchial adenocarcinoma. In a murine model of bronchoalveolar adenocarcinoma, mice lacking NFATc2 developed more and larger solid tumors than wild-type littermates. The extent of central tumor necrosis was decreased in the tumors in NFATc2((-/-)) mice, and this finding was associated with reduced tumor necrosis factor-alpha and interleukin-2 (IL-2) production by CD8(+) T cells. Adoptive transfer of CD8(+) T cells of NFATc2((-/-)) mice induced transforming growth factor-beta(1) in the airways of recipient mice, thus supporting CD4(+)CD25(+)Foxp-3(+)glucocorticoid-induced tumor necrosis factor receptor (GITR)(+) regulatory T (T(reg)) cell survival. Finally, engagement of GITR in NFATc2((-/-)) mice induced IFN-gamma levels in the airways, reversed the suppression by T(reg) cells, and costimulated effector CD4(+)CD25(+) (IL-2Ralpha) and memory CD4(+)CD127(+) (IL-7Ralpha) T cells, resulting in abrogation of carcinoma progression. Agonistic signaling through GITR, in the absence of NFATc2, thus emerges as a novel possible strategy for the treatment of human bronchial adenocarcinoma in the absence of NFATc2 by enhancing IL-2Ralpha(+) effector and IL-7Ralpha(+) memory-expressing T cells.
Resumo:
Skin appendages such as teeth and hair share several common signaling pathways. The nuclear factor I C (NFI-C) transcription factor has been implicated in tooth development, but a potential role in hair growth had not been assessed. In this study we found that NFI-C regulates the onset of the hair growth cycle. NFI-C(-/-) mice were delayed in the transition from the telogen to anagen phase of the hair follicle cycle after either experimental depilation or spontaneous hair loss. Lack of NFI-C resulted in delayed induction of the sonic hedgehog, Wnt5a, and Lef1 gene expression, which are key regulators of the hair follicle growth initiation. NFI-C(-/-) mice also showed elevated levels of transforming growth factor β1 (TGF-β1), an inhibitor of keratinocyte proliferation, and of the cell cycle inhibitor p21 at telogen. Reduced expression of Ki67, a marker of cell proliferation, was noted at the onset of anagen, indicating impaired activation of the hair progenitor cells. These findings implicate NFI-C in the repression of TGF-β1 signaling during telogen stage, resulting in the delay of progenitor cell proliferation and hair follicle regeneration in NFI-C-deficient mice. Taken together with prior observations, these findings also designate NFI-C as a regulator of adult progenitor cell proliferation and of postnatal tissue growth or regeneration.
Resumo:
Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.
Resumo:
The bone marrow constitutes a favorable environment for long-lived antibody-secreting plasma cells, providing blood-circulating antibody. Plasma cells are also present in mucosa-associated lymphoid tissue (MALT) to mediate local frontline immunity, but how plasma cell survival there is regulated is not known. Here we report that a proliferation-inducing ligand (APRIL) promoted survival of human upper and lower MALT plasma cells by upregulating expression of the antiapoptotic proteins bcl-2, bcl-xL, and mcl-1. The in situ localization of APRIL was consistent with such a prosurvival role in MALT. In upper MALT, tonsillar epithelium produced APRIL. Upon infection, APRIL production increased considerably when APRIL-secreting neutrophils recruited from the blood infiltrated the crypt epithelium. Heparan sulfate proteoglycans (HSPGs) retained secreted APRIL in the subepithelium of the infected zone to create APRIL-rich niches, wherein IgG-producing plasma cells accumulated. In lower MALT, neutrophils were the unique source of APRIL, giving rise to similar niches for IgA-producing plasmocytes in villi of lamina propria. Furthermore, we found that mucosal humoral immunity in APRIL-deficient mice is less persistent than in WT mice. Hence, production of APRIL by inflammation-recruited neutrophils may create plasma cell niches in MALT to sustain a local antibody production.
Resumo:
A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.
Resumo:
Peroxisome proliferator-activated receptor alpha (PPARalpha)is a nuclear receptor for various fatty acids, eicosanoids, and hypolipidemic drugs. In the presence of ligand, this transcription factor increases expression of target genes that are primarily associated with lipid homeostasis. We have previously reported PPARalpha as a nuclear receptor of the inflammatory mediator leukotriene B(4) (LTB(4)) and demonstrated an anti-inflammatory function for PPARalpha in vivo (Devchand, P. R., Keller, H., Peters, J. M., Vazquez, M., Gonzalez, F. J., and Wahli, W. (1996) Nature 384, 39-43). LTB(4) also has a cell surface receptor (BLTR) that mediates proinflammatory events, such as chemotaxis and chemokinesis (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997) Nature 387, 620-624). In this study, we report on chemical probes that differentially modulate activity of these two LTB(4) receptors. The compounds selected were originally characterized as synthetic BLTR effectors, both agonists and antagonists. Here, we evaluate the compounds as effectors of the three PPAR isotypes (alpha, beta, and gamma) by transient transfection assays and also determine whether the compounds are ligands for these nuclear receptors by coactivator-dependent receptor ligand interaction assay, a semifunctional in vitro assay. Because the compounds are PPARalpha selective, we further analyze their potency in a biological assay for the PPARalpha-mediated activity of lipid accumulation. These chemical probes will prove invaluable in dissecting processes that involve nuclear and cell surface LTB(4) receptors and also aid in drug discovery programs.
Resumo:
The Federal Highway Administration (FHWA) mandated utilizing the Load and Resistance Factor Design (LRFD) approach for all new bridges initiated in the United States after October 1, 2007. To achieve part of this goal, a database for Drilled Shaft Foundation Testing (DSHAFT) was developed and reported on by Garder, Ng, Sritharan, and Roling in 2012. DSHAFT is aimed at assimilating high-quality drilled shaft test data from Iowa and the surrounding regions. DSHAFT is currently housed on a project website (http://srg.cce.iastate.edu/dshaft) and contains data for 41 drilled shaft tests. The objective of this research was to utilize the DSHAFT database and develop a regional LRFD procedure for drilled shafts in Iowa with preliminary resistance factors using a probability-based reliability theory. This was done by examining current design and construction practices used by the Iowa Department of Transportation (DOT) as well as recommendations given in the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications and the FHWA drilled shaft guidelines. Various analytical methods were used to estimate side resistance and end bearing of drilled shafts in clay, sand, intermediate geomaterial (IGM), and rock. Since most of the load test results obtained from O-cell do not pass the 1-in. top displacement criterion used by the Iowa DOT and the 5% of shaft diameter for top displacement criterion recommended by AASHTO, three improved procedures are proposed to generate and extend equivalent top load-displacement curves that enable the quantification of measured resistances corresponding to the displacement criteria. Using the estimated and measured resistances, regional resistance factors were calibrated following the AASHTO LRFD framework and adjusted to resolve any anomalies observed among the factors. To illustrate the potential and successful use of drilled shafts in Iowa, the design procedures of drilled shaft foundations were demonstrated and the advantages of drilled shafts over driven piles were addressed in two case studies.
Resumo:
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.
Resumo:
The Drosophila transcription factor Prospero functions as a tumor suppressor, and it has been suggested that the human counterpart of Prospero, PROX1, acts similarly in human cancers. However, we show here that PROX1 promotes dysplasia in colonic adenomas and colorectal cancer progression. PROX1 expression marks the transition from benign colon adenoma to carcinoma in situ, and its loss inhibits growth of human colorectal tumor xenografts and intestinal adenomas in Apc(min/+) mice, while its transgenic overexpression promotes colorectal tumorigenesis. Furthermore, in intestinal tumors PROX1 is a direct and dose-dependent target of the beta-catenin/TCF signaling pathway, responsible for the neoplastic transformation. Our data underscore the complexity of cancer pathogenesis and implicate PROX1 in malignant tumor progression through the regulation of cell polarity and adhesion.