899 resultados para CELL ADHESION MOLECULE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paraneoplastic pemphigus (PNP) shows autoantibodies mainly to plakin and desmosomal cadherin family proteins. We have recently identified alpha-2-macroglobulin-like-1 (A2ML1), a broad range protease inhibitor, as a unique PNP antigen. In this study, we tested a large number of PNP sera by various methods. Forty (69.0%) of 58 PNP sera recognized A2ML1 recombinant protein expressed in COS7 cells by immunofluorescence (IF) and/or immunoprecipitation (IP)/immunoblotting (IB). IP/IB showed higher sensitivity than IF. In addition, 22 (37.9%) PNP sera reacted with A2ML1 by IB of cultured normal human keratinocytes (NHKs) under non-reducing conditions. Statistical analyses using various clinical and immunological data showed that the presence of anti-A2ML1 autoantibodies was associated with early disease onset and absence of ocular lesions. Next, to investigate the pathogenic role of anti-A2ML1 antibody, we performed additional functional studies. Addition of anti-A2ML1 polyclonal antibody to culture media decreased NHK cell adhesion examined by dissociation assay, and increased plasmin activity detected by casein zymography, suggesting that anti-A2ML1 antibody may decrease NHK cell adhesion through plasmin activation by inhibition of A2ML1. This study demonstrates that autoantibodies to A2ML1 are frequently and specifically detected and may have a pathogenic role in PNP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Integrins comprise a large family of cell adhesion receptors that mediate diverse biological events through cell-cell and cell-extracellular matrix interactions. Recent studies have shown that several integrins are localized to synapses with suggested roles in synaptic plasticity and memory formation. We generated a postnatal forebrain and excitatory neuron-specific knock-out of beta1-integrin in the mouse. Electrophysiological studies demonstrated that these mutants have impaired synaptic transmission through AMPA receptors and diminished NMDA receptor-dependent long-term potentiation. Despite the impairment in hippocampal synaptic transmission, the mutants displayed normal hippocampal-dependent spatial and contextual memory but were impaired in a hippocampal-dependent, nonmatching-to-place working memory task. These phenotypes parallel those observed in animals carrying knock-outs of the GluR1 (glutamate receptor subunit 1) subunit of the AMPA receptor. These observations suggest a new function of beta1-integrins as regulators of synaptic glutamate receptor function and working memory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Signaling through epidermal growth factor receptor (EGFR/ErbB) family members plays a very important role in regulating proliferation, development, and malignant transformation of mammary epithelial cells. ErbB family members are often over-expressed in human breast carcinomas. Lapatinib is an ErbB1 and ErbB2 tyrosine kinase inhibitor that has been shown to have anti-proliferative effects in breast and lung cancer cells. Cells treated with Lapatinib undergo G1 phase arrest, followed by apoptosis. Lapatinib has been approved for clinical use, though patients have developed resistance to the drug, as seen previously with other EGFR inhibitors. Moreover, the therapeutic efficacy varies significantly within the patient population, and the mechanism of drug sensitivity is not fully understood. Expression levels of ErbB2 are used as a prognostic marker for Lapatinib response; however, even among breast tumor cell lines that express similar levels of ErbB2 there is marked difference in their proliferative responses to Lapatinib. To understand the mechanisms of acquired resistance, we established a cell line SkBr3-R that is resistant to Lapatinib, from a Lapatinib-sensitive breast tumor cell line, SkBr3. We have characterized the cell lines and demonstrated that Lapatinib resistance in our system is not facilitated by receptor-level activity or by previously known mutations in the ErbB receptors. Significant changes were observed in cell proliferation, cell migration, cell cycle and cell death between the Lapatinib resistant SkBr3-R and sensitive SkBr3 cell lines. Recent studies have suggested STAT3 is upregulated in Lapatinib resistant tumors in association with ErbB signaling. We investigated the role that STAT3 may play in Lapatinib resistance and discovered higher STAT3 activity in these resistant cells. In addition, transcriptional profiling indicated higher expression of STAT3 target genes, as well as of other genes that promote survival. The gene array data also revealed cell cycle regulators and cell adhesion/junction component genes as possible mediator of Lapatinib resistance. Altogether, this study has identified several possible mechanisms of Lapatinib resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonsyndromic cleft lip with or without cleft palate (nsCL/P, MIM 119530) is perhaps the most common major birth defect. Homozygous PVRL1 loss-of-function mutations result in an autosomal recessive CL/P syndrome, CLPED1, and a PVRL1 nonsense mutation is associated with sporadic nsCL/P in Northern Venezuela. To address the more general role of PVRL1 variation in risk of nsCL/P, we carried out mutation analysis of PVRL1 in North American and Australian nsCL/P cases and population-matched controls. We identified a total of 15 variants, 5 of which were seen in both populations and 1 of which, an in-frame insertion at Glu442, was more frequent in patients than in controls in both populations, though the difference was not statistically significant. Another variant, which is specific to the PVRL1 beta (HIgR) isoform, S447L, was marginally associated with nsCL/P in North American Caucasian patients, but not in Australian patients, and overall variants that affect the beta-isoform were significantly more frequent among North American patients. One Australian patient had a splice junction mutation of PVRL1. Our results suggest that PVRL1 may play a minor role in susceptibility to the occurrence of nsCL/P in some Caucasian populations, and that variation involving the beta (HIgR) isoform might have particular importance for risk of orofacial clefts. Nevertheless, these results underscore the need for studies that involve very large numbers when assessing the possible role of rare variants in risk of complex traits such as nsCL/P.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The molecular mechanisms that mediate endometrial cancer invasion and metastasis remain poorly understood. This is a significant clinical problem, as there is no definitive cure for metastatic disease. The purinergic pathway’s generation of adenosine and its activation of the adenosine receptor A2B (A2BR) induces cell-cell adhesion to promote barrier function. This barrier function is known to be important in maintaining homeostasis during hypoxia, trauma, and sepsis. Loss of this epithelial barrier function provides a considerable advantage for carcinoma progression, as loss of cell-cell adhesions supports proliferation, aberrant signaling, epithelial-to-mesenchymal transition, invasion, and metastasis. The present work provides strong evidence that CD73-generated adenosine actively promotes cell-cell adhesion in carcinoma cells by filopodia-induced zippering. Adenosine-generating ecto-enzyme, CD73, was down-regulated in moderately- and poorly-differentiated, invasive, and metastatic endometrial carcinomas. CD73 expression and enzyme activity in normal endometrium and endometrial carcinomas was significantly correlated to the epithelial phenotype. Barrier function in normal epithelial cells of the endometrium was dependent on stress-induced generation of adenosine by CD73 and adenosine’s activation of A2BR. This same mechanism inhibited endometrial carcinoma cell migration and invasion. Finally, adenosine’s activation of A2BR induced the formation of filopodia that promoted the re-forming of cell-cell adhesions in carcinoma cells. Overall, these studies identified purinergic pathway-induced filopodia to be a novel mechanism of adenosine’s barrier function and a mechanism that has to be avoided/down-regulated by endometrial carcinoma cells attempting to lose attachment with their neighboring cells. These results provide insight into the molecular mechanisms of endometrial cancer invasion. In addition, because loss of cell-cell adhesions has been closely linked to therapy resistance in cancer, these results provide a rational clinical strategy for the re-establishment of cell-cell adhesions to potentially increase therapeutic sensitivity. In contrast to other molecular mechanisms regulating cell-cell adhesions, the purinergic pathway is clinically druggable, with agonists and antagonists currently being tested in clinical trials of various diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies in our laboratory have indicated that heparan sulfate proteoglycans (HSPGs) play an important role in murine embryo implantation. To investigate the potential function of HSPGs in human implantation, two human cell lines (RL95 and JAR) were selected to model uterine epithelium and embryonal trophectoderm, respectively. A heterologous cell-cell adhesion assay showed that initial binding between JAR and RL95 cells is mediated by cell surface glycosaminoglycans (GAG) with heparin-like properties, i.e., heparan sulfate and dermatan sulfate. Furthermore, a single class of highly specific, protease-sensitive heparin/heparan sulfate binding sites exist on the surface of RL95 cells. Three heparin binding, tryptic peptide fragments were isolated from RL95 cell surfaces and their amino termini partially sequenced. Reverse transcription-polymerase chain reaction (RT-PCR) generated 1 to 4 PCR products per tryptic peptide. Northern blot analysis of RNA from RL95 cells using one of these RT-PCR products identified a 1.2 Kb mRNA species (p24). The amino acid sequence predicted from the cDNA sequence contains a putative heparin-binding domain. A synthetic peptide representing this putative heparin binding domain was used to generate a rabbit polyclonal antibody (anti-p24). Indirect immunofluorescence studies on RL95 and JAR cells as well as binding studies of anti-p24 to intact RL95 cells demonstrate that p24 is distributed on the cell surface. Western blots of RL95 membrane preparations identify a 24 kDa protein (p24) highly enriched in the 100,000 g pellet plasma membrane-enriched fraction. p24 eluted from membranes with 0.8 M NaCl, but not 0.6 M NaCl, suggesting that it is a peripheral membrane component. Solubilized p24 binds heparin by heparin affinity chromatography and $\sp{125}$I-heparin binding assays. Furthermore, indirect immunofluorescence studies indicate that cytotrophoblast of floating and attached villi of the human fetal-maternal interface are recognized by anti-p24. The study also indicates that the HSPG, perlecan, accumulates where chorionic villi are attached to uterine stroma and where p24-expressing cytotrophoblast penetrate the stroma. Collectively, these data indicate that p24 is a cell surface membrane-associated heparin/heparan sulfate binding protein found in cytotrophoblast, but not many other cell types of the fetal-maternal interface. Furthermore, p24 colocalizes with HSPGs in regions of cytotrophoblast invasion. These observations are consistent with a role for HSPGs and HSPG binding proteins in human trophoblast-uterine cell interactions. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In normal lymphocytes an “inside-out” signal up-regulating integrin adhesion is followed by a ligand mediated “outside-in” signal for cell spreading. Although PKC mediates both events, distinct roles were found for different PLCs. The inhibition of phosphatidylinositol specific PLC decreased both cell adhesion and spreading on fibronectin in T cell receptor/CD28 activated peripheral blood T cells. However, inhibition of phosphatidylcholine specific PLC only blocked cell spreading and did not affect adhesion, indicating that “inside-out” signaling for the integrin α4β1 proceeds through phosphatidylinositol specific PLC and PKC, while the “outside-in” signal utilizes phosphatidylcholine specific PLC and PKC. Furthermore, β1 integrin chain mediated morphological changes in the T lymphocytic cell line HPB-ALL directly paralleled PKA activation, treatment of these cells with an inhibitory anti-β1 antibody blocked PKA activation and cell spreading, and this inhibition could be overcome by activating adenylate cyclase. Furthermore, inhibition of PKA was found to decrease the overall strength of cell adhesion or cellular avidity without affecting individual receptor affinity for soluble ligand. ^ When HPB-ALL cells interact with immobilized FN, two separate morphological phenotypes can be induced. Some cells flattened their cell body into a triangular shape and begin to migrate, while others extended a pseudopod from their stationary cell body. This second morphology recapitulates the shape changes observed during transendothelial migration. During these morphological changes, α4β1 integrins are internalized into endocytic vesicles that ultimately accumulate at the juncture between the cell body and an extending pseudopod. From this juncture, they are rapidly transported down the length of the pseudopod to its most distal end. ^ In addition to an accumulation of integrin containing vesicles, the pseudopod base was found to have increased amounts of the small GTPase RhoA and active PKA. The inhibition of PKA or RhoA resulted in lymphocytes with similar aberrant stellate morphologies. Furthermore, inhibition of PKA blocked the α4β1 mediated phosphorylation of RhoA. The co-localization of active PKA, RhoA and integrin containing endocytic vesicles indicates that integrin triggering can cause the rapid redistribution and activation of key signaling intermediates and raises the possibility that regulation of lymphocyte morphology by PKA and RhoA is through adhesion receptor recycling. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NaV-b subunits associate with the NaV-a or pore-forming subunit of the voltage-dependent sodium channel and play critical roles in channel expression, voltage dependence of the channel gating, cell adhesion, signal transduction, and channel pharmacology. Five NaV-b subunits have been identified in humans, all of them implicated in many primary arrhythmia syndromes that cause sudden death or neurologic disorders, including long QT syndrome, Brugada syndrome, cardiac conduction disorders, idiopathic ventricular fibrillation, epilepsy, neurodegenerative diseases, and neuropsychiatric disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Distinct populations of neutrophils have been identified based on the expression of intercellular adhesion molecule 1 (ICAM1, CD54) and chemokine receptor 1 (CXCR1, interleukin 8 receptor α). AIM We analyzed the expression of vascular endothelial growth factor receptor 1 (VEGFR1), a physiological negative regulator of angiogenesis, on distinct populations of neutrophils from the blood of patients before and after adjuvant chemotherapy for breast cancer. MATERIALS AND METHODS Neutrophil populations were distinguished as reverse transmigrated (ICAM1(high)/CXCR1(low)), naïve (ICAM1(low)/CXCR1(high)), or tissue-resident neutrophils (ICAM1(low)/CXCR1(low)), and their VEGFR1 expression quantified. RESULTS Reverse transmigrated ICAM1(high)/CXCR1(low) neutrophilic granulocytes decreased significantly after chemotherapy and these were also the cells with highest mean fluorescence intensity for VEGFR1. CONCLUSION Chemotherapy mainly reduces the number of reverse transmigrated long-lived ICAM1(high)/CXCR1(low) VEGFR1-expressing neutrophils. The decrease of antiangiogenic VEGFR1 may have a potential impact on tumour angiogenesis in patients undergoing adjuvant chemotherapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Salmonella enterica subspecies 1 serovar Typhimurium is a principal cause of human enterocolitis. For unknown reasons, in mice serovar Typhimurium does not provoke intestinal inflammation but rather targets the gut-associated lymphatic tissues and causes a systemic typhoid-like infection. The lack of a suitable murine model has limited the analysis of the pathogenetic mechanisms of intestinal salmonellosis. We describe here how streptomycin-pretreated mice provide a mouse model for serovar Typhimurium colitis. Serovar Typhimurium colitis in streptomycin-pretreated mice resembles many aspects of the human infection, including epithelial ulceration, edema, induction of intercellular adhesion molecule 1, and massive infiltration of PMN/CD18(+) cells. This pathology is strongly dependent on protein translocation via the serovar Typhimurium SPI1 type III secretion system. Using a lymphotoxin beta-receptor knockout mouse strain that lacks all lymph nodes and organized gut-associated lymphatic tissues, we demonstrate that Peyer's patches and mesenteric lymph nodes are dispensable for the initiation of murine serovar Typhimurium colitis. Our results demonstrate that streptomycin-pretreated mice offer a unique infection model that allows for the first time to use mutants of both the pathogen and the host to study the molecular mechanisms of enteric salmonellosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eph receptors and their ligands (ephrins) play an important role in axonal guidance, topographic mapping, and angiogenesis. The signaling pathways mediating these activities are starting to emerge and are highly cell- and receptor-type specific. Here we demonstrate that activated EphB1 recruits the adaptor proteins Grb2 and p52Shc and promotes p52Shc and c-Src tyrosine phosphorylation as well as MAPK/extracellular signal-regulated kinase (ERK) activation. EphB1-mediated increase of cell migration was abrogated by the MEK inhibitor PD98059 and Src inhibitor PP2. In contrast, cell adhesion, which we previously showed to be c-jun NH2-terminal kinase (JNK) dependent, was unaffected by ERK1/2 and Src inhibition. Expression of dominant-negative c-Src significantly reduced EphB1-dependent ERK1/2 activation and chemotaxis. Site-directed mutagenesis experiments demonstrate that tyrosines 600 and 778 of EphB1 are required for its interaction with c-Src and p52Shc. Furthermore, phosphorylation of p52Shc by c-Src is essential for its recruitment to EphB1 signaling complexes through its phosphotyrosine binding domain. Together these findings highlight a new aspect of EphB1 signaling, whereby the concerted action of c-Src and p52Shc activates MAPK/ERK and regulates events involved in cell motility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are two severe autoimmune bullous diseases of the mucosae and/or skin associated with autoantibodies directed against desmoglein (Dsg) 3 and/or Dsg1. These two desmosomal cadherins, typifying stratified epithelia, are components of cell adhesion complexes called desmosomes and represent extra-desmosomal adhesion receptors. We herein review the advances in our understanding of the immune response underlying pemphigus, including human leucocyte antigen (HLA) class II-associated genetic susceptibility, characteristics of pathogenic anti-Dsg antibodies, antigenic mapping studies as well as findings about Dsg-specific B and T cells. The pathogenicity of anti-Dsg autoantibodies has been convincingly demonstrated. Disease activity and clinical phenotype correlate with anti-Dsg antibody titers and profile while passive transfer of anti-Dsg IgG from pemphigus patients' results in pemphigus-like lesions in neonatal and adult mice. Finally, adoptive transfer of splenocytes from Dsg3-knockout mice immunized with murine Dsg3 into immunodeficient mice phenotypically recapitulates PV. Although the exact pathogenic mechanisms leading to blister formation have not been fully elucidated, intracellular signaling following antibody binding has been found to be necessary for inducing cell-cell dissociation, at least for PV. These new insights not only highlight the key role of Dsgs in maintenance of tissue homeostasis but are expected to progressively change pemphigus management, paving the way for novel targeted immunologic and pharmacologic therapies.