928 resultados para C. Electrical properties


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report presents the proceedings of the Biochemical Engineering Symposium held at Kansas State University, April 28, 1973. Since a number of the contributions will be published in detail elsewhere, only brief summaries of each contribution are included here. Requests for additional information on projects conducted at The University of Nebraska should be directed to Dr. Peter J. Reilly, and those at Kansas State University to the editors. ContentsKenneth J. Jacobson, Andrew H.C. Chan, and Raymond C. Eliason, "Properties and Utilization of Small Particulates in Cattle Manure" Cady R. Engler and James S. Yohn, "Protein from Manure" Robert J. Williams, "Kinetics of Sucrose Inversion Using Invertase Immobilized on Hollow Fibers of Cellulose Acetate" David F. Aldis and Thomas A. Carlisle, "Study of a Triiodide-Resin Complex Disinfection System" John C. Heydweiller, "Modeling and Analysis of Symbiotic Growth" Kenneth J. Jacobson, "Synchronized Growth of the Blue Green Alga Microcystis aeruginosa" Clarence C. Y. Ron arui Lincoln L. S. Yang, "Computer Modeling of the Reductive Pentose Phosphate Cycle" Ming-ching T. Kuo, "Application of a Parallel Biochemical Oxidation Kinetic Model to the Design of an Activated Sludge System Including a Primary Clarifier" Prakash N. Mishra, "Optimal Synthesis of Water Renovation Systems"

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The symposium whose papers are abstracted here was the fourth in a series held alternately at Kansas State University and the University of Nebraska–Lincoln. Requests for further information on projects conducted at Kansas State should be directed to Professor L.E. Erickson and on those at Nebraska to the editor. ContentsJohn C. Heydweiller, "Estimating Sedimentation of Organisms in a Tower-Type Activated Sludge System" Raymond C. Eliason, "Properties and Utilization of Small Particulates in Cattle Manure" Kenneth H. Hsu, "Oxygen Transfer in Tower Systems with Motionless Mixers" Raymond C. Eliason, "Hydrolysis of Sucrose by 20 Invertase Immobilized on Hollow Fibers" Robert Shipman, "Single Cell Protein from Photosynthetic 26 Bacteria" Peter J. Reilly, "Stability of Commensalistic Systems"

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One novel treatment strategy for the diseased heart focuses on the use of pluripotent stem cell-derived cardiomyocytes (SC-CMs) to overcome the heart's innate deficiency for self-repair. However, targeted application of SC-CMs requires in-depth characterization of their true cardiogenic potential in terms of excitability and intercellular coupling at cellular level and in multicellular preparations. In this study, we elucidated the electrical characteristics of single SC-CMs and intercellular coupling quality of cell pairs, and concomitantly compared them with well-characterized murine native neonatal and immortalized HL-1 cardiomyocytes. Firstly, we investigated the electrical properties and Ca2+ signaling mechanisms specific to cardiac contraction in single SC-CMs. Despite heterogeneity of the new cardiac cell population, their electrophysiological activity and Ca2+ handling were similar to native cells. Secondly, we investigated the capability of paired SC-CMs to form an adequate subunit of a functional syncytium and analyzed gap junctions and signal transmission by dye transfer in cell pairs. We discovered significantly diminished coupling in SC-CMs compared with native cells, which could not be enhanced by a coculture approach combining SC-CMs and primary CMs. Moreover, quantitative and structural analysis of gap junctions presented significantly reduced connexin expression levels compared with native CMs. Strong dependence of intercellular coupling on gap junction density was further confirmed by computational simulations. These novel findings demonstrate that despite the cardiogenic electrophysiological profile, SC-CMs present significant limitations in intercellular communication. Inadequate coupling may severely impair functional integration and signal transmission, which needs to be carefully considered for the prospective use of SC-CMs in cardiac repair.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of MWCNT introduction in a polycarbosilane based ceramic on its electrical properties is presented. The electrical conductivity of two MWCNT powders was measured under dynamic compaction up to 20 MPa when it reached 3–5 S/cm. The compaction behavior was also analyzed and modeled. A composite was then realized using allylhydridopolycarbosilane SMP10® and divinylbenzene as matrix. Intact 10 mm MWCNT-SiC ceramic discs samples with 2 wt.% filler load were produced pressure-less via liquid route despite the linear shrinkage of about 30%. Nanotubes microstructure and distribution in the matrix were confirmed after pyrolysis with TEM and SEM analysis. Anyhow similar electrical conductivity values after pyrolysis between the loaded and unloaded samples were measured. The microstructure analysis via XRD and TEM revealed that the percolative carbon network formed through the use of divinylbenzene improves the electric conductivity more than that of MWCNT addition and also simplifies the whole process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of Maria S. MERIAN voyage MSM35 was to conduct marine controlled source electromagnetic (CSEM) measurements in the Danube Delta, Black Sea, to identify suitable gas hydrate deposits for a future MEBO drilling test site for methane production and CO2 sequestration in hydrate form. Marine CSEM is a geophysical exploration method to derive the electrical properties, i.e. resistivity of the seafloor. Gas hydrates and free gas are electrically insulating and replace conductive pore fluid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-assembled InGaAs quantum dots show unique physical properties such as three dimensional confinement, high size homogeneity, high density and low number of dislocations. They have been extensively used in the active regions of laser devices for optical communications applications [1]. Therefore, buried quantum dots (BQDs) embedded in wider band gap materials have been normally studied. The wave confinement in all directions and the stress field around the dot affect both optical and electrical properties [2, 3]. However, surface quantum dots (SQDs) are less affected by stress, although their optical and electrical characteristics have a strong dependence on surface fluctuation. Thus, they can play an important role in sensor applications

Relevância:

80.00% 80.00%

Publicador:

Resumo:

III-nitride nanorods have attracted much scientific interest during the last decade because of their unique optical and electrical properties [1,2]. The high crystal quality and the absence of extended defects make them ideal candidates for the fabrication of high efficiency opto-electronic devices such as nano-photodetectors, light-emitting diodes, and solar cells [1-3]. Nitride nanorods are commonly grown in the self-assembled mode by plasma-assisted molecular beam epitaxy (MBE) [4]. However, self-assembled nanorods are characterized by inhomogeneous heights and diameters, which render the device processing very difficult and negatively affect the electronic transport properties of the final device. For this reason, the selective area growth (SAG) mode has been proposed, where the nanorods preferentially grow with high order on pre-defined sites on a pre-patterned substrate

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GaN/InGaN nanorods have attracted much scientific interest during the last decade because of their unique optical and electrical properties [1,2]. The high crystal quality and the absence of extended defects make them ideal candidates for the fabrication of high efficiency opto-electronic devices such as nano-photodetectors, light-emitting diodes, and solar cells [1-3]. Nitrides nanorods are commonly grown in the self-assembled mode by plasma-assisted molecular beam epitaxy (MBE) [4]. However, self-assembled nanorods are characterized by inhomogeneous heights and diameters, which render the device processing very difficult and negatively affect the electronic transport properties of the final device. For this reason, the selective area growth (SAG) mode has been proposed, where the nanorods preferentially grow on pre-defined sites on a pre-patterned substrate [5].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been significant research in the study of in-plane charge-carrier transport in graphene in order to understand and exploit its unique electrical properties; however, the vertical graphene–semiconductor system also presents opportunities for unique devices. In this letter, we investigate the epitaxial graphene/p-type 4H-SiC system to better understand this vertical heterojunction. The I–V behavior does not demonstrate thermionic emission properties that are indicative of a Schottky barrier but rather demonstrates characteristics of a semiconductor heterojunction. This is confirmed by the fitting of the temperature-dependent I–V curves to classical heterojunction equations and the observation of band-edge electroluminescence in SiC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CaCu3Ti4O12 (CCTO) was prepared by a conventional synthesis (CS) and through reaction sintering, in which synthesis and sintering of the material take place in one single step. The microstructure and the dielectric properties of CCTO have been studied by XRD, FE-SEM, EDS, AFM, and impedance spectroscopy to correlate structure, microstructure, and electrical properties. Samples prepared by reactive sintering show very similar dielectric behavior to those prepared by CS. Therefore, it is possible to prepare CCTO by means of a single-step processing method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electromagnetic Band Gap (EBG) based on Frequency Selective Surfaces (FSS) [1] are one type of metamaterials [2] with electrical properties [3]. This EBG are used in mutual coupling reduction, back lobe radiation reduction, etc. In this work not only new shapes for the mushroom-type are presented, but also multilayered configurations were studied in order to reduce the patch size and the necessary number of elements.