923 resultados para C-25 regular isoprenoid acid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several secondary alcohols undergo the Mitsunobu reaction with triphenylphosphine, diethyl azodicarboxylate and (1S)-(+)-ketopinic acid (0.5 equiv. each relative to alcohol) in CH2Cl2 solution at -23degreesC, to furnish the chiral secondary alcohol and its ketopinate ester (d.e. >95%,). Chromatographic separation of these and subsequent hydrolysis of the ketopinate ester (KOH EtOH/0degreesC) provides the chiral secondary alcohol in overall yields of similar to75% and e.e. of similar to80%. When the above Mitsunobu reaction is performed with 1 equiv. of all the reactants. an effective dynamic kinetic resolution of the alcohol is observed in two cases, the ketopinate esters being isolated in 63 and 75% yields and >95% d.e. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes the results of the preparation and characterization of self-doped conducting copolymers of aniline and toluidine with m-aminobenzene sulfonic acid. The copolymers have an intrinsic acid group that is capable of doping polyaniline. Spectroscopic, morphological, and electrical conductivity studies have provided insight into the structural and electronic properties of the copolymers. The differences in the properties of polyaniline and polytoluidine due to the sulfonic acid ring substituent on the phenyl ring are discussed. The scanning electron micrographs of the copolymers reveal regions of sharp-edged, needle-shaped structures, whereas the X-ray diffraction patterns show that the copolymers are relatively more crystalline in nature. (C) 2002 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-grain synchronous dataflow graphs or multi-rate graphs have the distinct feature that the nodes of the dataflow graph fire at different rates. Such multi-rate large-grain dataflow graphs have been widely regarded as a powerful programming model for DSP applications. In this paper we propose a method to minimize buffer storage requirement in constructing rate-optimal compile-time (MBRO) schedules for multi-rate dataflow graphs. We demonstrate that the constraints to minimize buffer storage while executing at the optimal computation rate (i.e. the maximum possible computation rate without storage constraints) can be formulated as a unified linear programming problem in our framework. A novel feature of our method is that in constructing the rate-optimal schedule, it directly minimizes the memory requirement by choosing the schedule time of nodes appropriately. Lastly, a new circular-arc interval graph coloring algorithm has been proposed to further reduce the memory requirement by allowing buffer sharing among the arcs of the multi-rate dataflow graph. We have constructed an experimental testbed which implements our MBRO scheduling algorithm as well as (i) the widely used periodic admissible parallel schedules (also known as block schedules) proposed by Lee and Messerschmitt (IEEE Transactions on Computers, vol. 36, no. 1, 1987, pp. 24-35), (ii) the optimal scheduling buffer allocation (OSBA) algorithm of Ning and Gao (Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, SC, Jan. 10-13, 1993, pp. 29-42), and (iii) the multi-rate software pipelining (MRSP) algorithm (Govindarajan and Gao, in Proceedings of the 1993 International Conference on Application Specific Array Processors, Venice, Italy, Oct. 25-27, 1993, pp. 77-88). Schedules generated for a number of random dataflow graphs and for a set of DSP application programs using the different scheduling methods are compared. The experimental results have demonstrated a significant improvement (10-20%) in buffer requirements for the MBRO schedules compared to the schedules generated by the other three methods, without sacrificing the computation rate. The MBRO method also gives a 20% average improvement in computation rate compared to Lee's Block scheduling method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copolymers of aniline and ortholmeta-amino benzoic acid were synthesized by chemical polymerization using an inverse emulsion pathway. The copolymers are soluble in organic solvents, and the solubility increases with the amino benzoic acid content in the feed. The reaction conditions were optimized with emphasis on high yield and relatively good conductivity (2.5 X 10(-1) S cm(-1)). The copolymers were characterized by a number of techniques including UV-vis, FT-IR, FT-Raman, EPR and NNM spectroscopy, thermal analysis, SEM and conductivity. The influence of the carboxylic acid group ring substituent on the copolymers is investigated. The spectral studies reveal that the amino benzoic acid groups restrict the conjugation along the polymer chain. The SEM micrographs of the copolymers reveal regions of amorphous and crystalline domain. Thermal studies indicate a marginally higher thermal stability for poly(aniline-co-m-amino benzoic acid) compared to poly(aniline-co-o-amino benzoic acid). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and synthesis of agents that can abstract zinc from their [CCXX] (C=cysteine; X=cysteine/histidine) boxes by thioldisulfide exchange-having as control, the redox parities of the core sulfur ligands of the reagent and the enzyme, has been illustrated, and their efficiency demonstrated by monitoring the inhibition of the transcription of calf thymus DNA by E. coli RNA polymerase, which harbors two zinc atoms in their [CCXX] boxes of which one is exchangeable. Maximum inhibition possible with removal of the exchangeable zinc was seen with redox-sulfanilamide-glutamate composite. In sharp contrast, normal chelating agents (EDTA, phenanthroline) even in a thousand fold excess showed only marginal inhibition, thus supporting an exchange mechanism for the metal removal. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactivity switching and selective activation of C-1 or C-3 in 2,3-unsaturated thioglycosides, namely, 2,3-dideoxy-1-thio-D-hex-2-enopyranosides are reported. The reactivity switching allowed activation of either C-1 or C-3, with the use of either N-iodosuccinimide (NIS)/triflic acid (TfOH) or TfOH alone. C-1 glycosylation with alcohol acceptors occurred in the presence of NIS/TfOH, without the acceptors reacting at C-3. On the other hand, reaction of 2,3-unsaturated thioglycosides with alcohols mediated by triflic acid led to transposition of C-1 ethylthio-moiety to C-3 intramolecularly, to form 3-ethylthio-glycals. Resulting glycals underwent glycosylation with alcohols to afford 3-ethylthio-2-deoxy glycosides. However, when thiol was used as an acceptor, only a stereoselective addition at C-3 resulted, so as to form C-1, C-3 dithio-substituted 2-deoxypyranosides. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. During the fermentation of water-logged soil containing added substances with different carbon-nitrogen ratios, the reaction first turns slightly acid, but soon returns to the original hydrogen-ion concentration (pH 7·6). 2. The quantities of ammonia present in the medium increase up to a point, after which there is steady decrease. 3. There is nitrification only in the case of substances with narrow C/N ratios. The production of nitrate generally commences only after about a month, when the vigour of the initial fermentation has subsided and fairly large quantities of ammonia have accumulated in the medium. 4. The extent of mineralisation of nitrogen is determined chiefly by the C/N ratio, though in the cases of substances like mahua and lantana the presence of other constituents may also influence the processes. The quantities of mineralised nitrogen present in the soil system generally tend to decrease after about two months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Turkevich method for synthesizing gold nanoparticles, using sodium citrate as the reducing agent, is renowned for its ability to produce biocompatible colloids with mean size >10 nm. Here we show that monodisperse gold nanoparticles in the 5-10 nm size range can be synthesized by simply reversing the order of addition of reactants, i.e. adding chloroauric acid to citrate solution. Kinetic studies and electron microscopic characterization revealed that the reactivity of chloroauric acid, initial molar ratio of citrate to chloroauric acid (MR), and reaction mixture pH play an important role in producing monodisperse gold nanoparticles. Reversing the order of addition also enhanced the stabilization of nanoparticles at high MR values. Remarkably, the system exhibits a `memory' of the order of addition, even when the timescale of mixing is much shorter than the timescale of synthesis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copolymers of o-lm-toluidine with o-lm-amino benzoic acid have been synthesized by chemical polymerization using inverse emulsion pathway and characterized by a number of techniques including UV-Vis, FT-IR, FT Raman, EPR and NMR spectroscopies, thermal analysis and conductivity. The solubility of the copolymers in organic solvents increases with increase in the amount of amino benzoic acid in the feed. The copolymers synthesized at room temperature show relatively higher conductivity and are obtained in higher yield compared to those synthesized at 0 and 60 degreesC. The spectral studies have revealed restricted conjugation along the polymer chain. The effect of -COOH substituent on the copolymer structure is discussed. (C) 2003 Elsevier Science B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis of 503 available triosephosphate isomerase sequences revealed nine fully conserved residues. Of these, four residues-K12, H95, E97 and E165-are capable of proton transfer and are all arrayed around the dihydroxyacetone phosphate substrate in the three-dimensional structure. Specific roles have been assigned to the residues K12, H95 and E165, but the nature of the involvement of E97 has not been established. Kinetic and structural characterization is reported for the E97Q and E97D mutants of Plasmodium falciparum triosephosphate isomerase (Pf TIM). A 4000-fold reduction in k(cat) is observed for E97Q, whereas the E97D mutant shows a 100-fold reduction. The control mutant, E165A, which lacks the key catalytic base, shows an approximately 9000-fold drop in activity. The integrity of the overall fold and stability of the dimeric structure have been demonstrated by biophysical studies. Crystal structures of E97Q and E97D mutants have been determined at 2.0 angstrom resolution. In the case of the isosteric replacement of glutamic acid by glutamine in the E97Q mutant a large conformational change for the critical K12 side chain is observed, corresponding to a trans-to-gauche transition about the C gamma-C delta (chi(3)) bond. In the E97D mutant, the K12 side chain maintains the wild-type orientation, but the hydrogen bond between K12 and D97 is lost. The results are interpreted as a direct role for E97 in the catalytic proton transfer cycle. The proposed mechanism eliminates the need to invoke the formation of the energetically unfavourable imidazolate anion at H95, a key feature of the classical mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of bio-composite polymer electrolyte membranes comprising chitosan (CS) and certain biomolecules in particular, plant hormones such as 3-indole acetic acid (IAA), 4-chlorophenoxy acetic acid (CAA) and 1-naphthalene acetic acid (NAA) are explored to realize proton-conducting bio-composite membranes for application in direct methanol fuel cells (DMFCs). The sorption capability, proton conductivity and ion-exchange capacity of the membranes are characterized in conjunction with their thermal and mechanical behaviour. A novel approach to measure the permeability of the membranes to both water and methanol is also reported, employing NMR imaging and volume localized NMR spectroscopy, using a two compartment permeability cell. A DMFC using CS-IAA composite membrane, operating with 2M aqueous methanol and air at 70 degrees C delivers a peak power density of 25 mW/cm(2) at a load current density of 150 mA/cm(2). The study opens up the use of bio-compatible membranes in polymer-electrolyte-membrane fuel cells. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.030111jes] All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new hydroxymethyl-linked non-natural disaccharide analogues, containing an additional methylene group in between the glycosidic linkage, were synthesized by utilizing 4-C-hydroxymethyl-alpha-D-glucopyranoside as the glycosyl donor. A kinetic study was undertaken to assess the hydrolytic stabilities of these new disaccharide analogues toward acid-catalyzed hydrolysis, at 60 degrees C and 70 degrees C. The studies showed that the disaccharide analogues were stable, by an order of magnitude, than naturally-occurring disaccharides, such as, cellobiose, lactose, and maltose. The first order rate constants were lower than that of methyl glycosides and the trend of hydrolysis rate constants followed that of naturally-occurring disaccharides. alpha-Anomer showed faster hydrolysis than the beta-anomer and the presence of axial hydroxyl group also led to faster hydrolysis among the disaccharide analogues. Energy minimized structures, derived through molecular modeling, showed that dihedral angles around the glycosidic bond in disaccharide analogues were nearly similar to that of naturally-occurring disaccharides. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extension of the supramolecular synthon-based fragment approach (SBFA) method for transferability of multipole charge density parameters to include weak supramolecular synthons is proposed. In particular, the SBFA method is applied to C-H center dot center dot center dot O, C-H center dot center dot center dot F, and F center dot center dot center dot F containing synthons. A high resolution charge density study has been performed on 4-fluorobenzoic acid to build a synthon library for C-H center dot center dot center dot F infinite chain interactions. Libraries for C-H center dot center dot center dot O and F center dot center dot center dot F synthons were taken from earlier work. The SBFA methodology was applied successfully to 2- and 3-fluorobenzoic acids, data sets for which were collected in a routine manner at 100 K, and the modularity of the synthons was demonstrated. Cocrystals of isonicotinamide with all three fluorobenzoic acids were also studied with the SBFA method. The topological analysis of inter- and intramolecular interaction regions was performed using Bader's AIM approach. This study shows that the SBFA method is generally applicable to generate charge density maps using information from multiple intermolecular regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoclusters of Pt were electrochemically deposited on a conducting polymer, namely, poly(3,4-ethylenedioxythiophene) (PEDOT), which was also electrochemically deposited on carbon paper current collector. PEDOT facilitated uniform distribution of Pt nanoclusters, when compared with Pt electrodeposition on bare carbon paper substrate. Spectroscopy data indicated absence of any interaction between PEDOT and Pt. The electrochemically active surface area as measured from carbon monoxide adsorption followed by its oxidation was several times greater for Pt-PEDOT/C electrode in comparison with Pt/C electrode. The catalytic activity of Pt-PEDOT/C electrode for electrooxidation of formic acid was significantly greater than that of Pt/C electrode. Amperometry data suggested that the electrodes were stable for continuous oxidation of HCOOH.