1000 resultados para Byrd ice core
Resumo:
As a result of intensive field activities carried out by several nations over the past 15 years, a set of accumulation measurements for western Dronning Maud Land, Antarctica, was collected, based on firn-core drilling and snow-pit sampling. This new information was supplemented by earlier data taken from the literature, resulting in 111 accumulation values. Using Geographical Information Systems software, a first region-wide mean annual snow-accumulation field was derived. In order to define suitable interpolation criteria, the accumulation records were analyzed with respect to their spatial autocorrelation and statistical properties. The resulting accumulation pattern resembles well known characteristics such as a relatively wet coastal area with a sharp transition to the dry interior, but also reveals complex topographic effects. Furthermore, this work identifies new high-return shallow drilling sites by uncovering areas of insufficient sampling density.
Resumo:
The dataset contains the revised age models and foraminiferal records obtained for the Last Interglacial period in six marine sediment cores: - the Southern Ocean core MD02-2488 (age model, sea surface temperatures, benthic d18O and d13C for the period 136-108 ka), - the North Atlantic core MD95-2042 (age model, planktic d18O, benthic d18O and d13C for the period 135-110 ka), - the North Atlantic core ODP 980 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the North Atlantic core CH69-K09 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the Norwegian Sea core MD95-2010 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O, ice-rafted detritus for the period 134-110 ka), - the Labrador Sea core EW9302-JPC2 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O for the period 134-110 ka).
Resumo:
Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean (Martin et al., 1990, doi:10.1038/345156a0; Martin, 1990, doi:10.1029/PA005i001p00001). Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40 parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles (Watson et al., 2000, doi:10.1038/35037561; Kohfeld et al., 2005, doi:10.1126/science.1105375; Martínez-Garcia et al., 2009, doi:10.1029/2008PA001657; Sigman et al., 2010, doi:10.1038/nature09149; Hain et al., 2010, doi:10.1029/2010gb003790). So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (Lambert et al., 2008, doi:10.1038/nature06763; Wolf et al., 2006, doi:10.1038/nature04614) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles (Martínez-Garcia et al., 2009; Lambert et al., 2008; Wolff et al., 2006), providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.
Resumo:
Although the pulsating nature and the abruptness of the last deglaciation are well documented in marine and land records, very few marine records have so far been able to capture the high-frequency climatic changes recorded in the Greenland ice core Dye 3. We studied high-resolution sediment cores from SE Norwegian Sea, which display a detailed climatic record during the last deglaciation comparable to that of Dye 3. Accelerator mass spectrometry age control of the cores enables us to correlate this record in detail with continental records. The results indicate that the surface waters of the SE Norwegian Sea were seasonally ice free after 13,400 B.P. The Bølling/Allerød interstadial complex (13,200-11,200 B.P.) was a climatically unstable period with changing Arctic-Subarctic conditions. This period was punctuated by four progressively more severe sea surface temperature (SST) minima: between 12,900-12,800 B.P. (BCP I); 12,500-12,400 B.P. (BCP II); 12,300-12,000 B.P. (OD I); and 11,800-11,500 B.P. (OD II). The Younger Dryas (YD) (11,200-10,200 B.P.) represents the severest and most prolonged cold episode of this series of climatic deteriorations. It was bounded by very rapid SST changes and characterized by Arctic-Polar conditions. The first true warm Atlantic water incursion to the SE Norwegian Sea took place around 10,100 B.P., followed by a brief cooler condition between 9900-9600 B.P. (YD II). The early Holocene climatic optimum occurred between 8000-5000 B.P. A conceptual model is proposed where meltwater fluxes are suggested to cause the observed instability in the SST record.
Resumo:
The most direct method of investigating past variations of the atmospheric CO2 concentration before 1958, when continuous direct atmospheric CO2 measurements started, is the analysis of air extracted from suitable ice cores. Here we present a new detailed CO2 record from the Dronning Maud Land (DML) ice core, drilled in the framework of the European Project for Ice Coring in Antarctica (EPICA) and some new measurements on a previously drilled ice core from the South Pole. The DML CO2 record shows an increase from about 278 to 282 parts per million by volume (ppmv) between ad 1000 and ad 1200 and a fairly continuous decrease to a mean value of about 277 ppmv around ad 1700. While the new South Pole measurements agree well with DML at the minimum at ad 1700 they are on average about 2 ppmv lower during the period ad 1000-1500. Published measurements from the coastal high-accumulation site Law Dome are considered as very reliable because of the reproducibility of the measurements, high temporal resolution and an accurate time scale. Other Antarctic ice cores could not, or only partly, reproduce the pre-industrial measurements from Law Dome. A comparison of the trends of DML and Law Dome shows a general agreement. However we should be able to rule out co-variations caused by the same artefact. Two possible effects are discussed, first production of CO2 by chemical reactions and second diffusion of dissolved air through the ice matrix into the bubbles. While the first effect cannot be totally excluded, comparison of the Law Dome and DML record shows that dissolved air diffusing to bubbles cannot be responsible for the pre-industrial variation. Therefore, the new record is not a proof of the Law Dome results but the first very strong support from an ice core of the Antarctic plateau.
Resumo:
In order to reconstruct the monsoonal variability during the late Holocene we investigated a complete, annually laminated sediment record from the oxygen minimum zone (OMZ) off Pakistan for oxygen isotopes of planktic foraminifera and alkenone-derived sea surface temperatures (SST). Significant SST changes of up to 3°C which cannot be explained by changes in the alkenone-producing coccolithophorid species (inferred from the Gephyrocapsa oceanica / Emiliania huxleyi ratio) suggest that SST changes are driven by changes in the monsoon strength. Our high-(decadal)-resolution data indicate that the late Holocene in the northeastern Arabian Sea was not characterized by a stable uniform climate, as inferred from the Greenland ice cores, but by variations in the dominance of the SW monsoon conditions with significant effects on temperatures. Highest SST fluctuations of up to 3.0°C and 2.5°C were observed for the time interval from 4600 to 3300 years B.P. and during the past 500 years. The significant, short-term SST changes during the past 500 years might be related to climatic instabilities known from the northern latitudes ("Little Ice Age") and confirm global effects. Surface salinity values, reconstructed from delta18O records after correction for temperature-related oxygen isotope fractionation, suggest that in general, the past 5000 years were characterized by higher-than-recent evaporation and more intense SW monsoon conditions. However, between 4600 and 3700 years B.P., evaporation dropped, SW monsoon weakened, and NE monsoon conditions were comparatively enhanced. For the past 1500 years we infer strongly fluctuating monsoon conditions. Comparisons of reconstructed salinity records with ice accumulation data from published Tibetan ice core and Tibetan tree ring width data reveal that during the past 2000 years, enhanced evaporation in the northeastern Arabian Sea correlates with periods of increased ice accumulation in Tibet, and vice versa. This suggests a strong climatic relationship between both monsoon-controlled areas.