891 resultados para Bovine pituitary Growth hormone gene expression
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several evidences point for beneficial effects of growth hormone (GH) in heart failure (HF). Taking into account that HF is related with changes in myocardial oxidative stress and in energy generation from metabolic pathways, it is important to clarify whether GH increase or decrease myocardial oxidative stress and what is its effect on energetic metabolism in HF condition. Thus, this study investigated the effects of two different doses of GH on energetic metabolism and oxidative stress in myocardium of rats with HF. Male Wistar rats (n = 25) were submitted to aortic stenosis (AS). The HF was evidenced by tachypnea and echocardiographic criteria around 28 weeks of AS. The rats were then randomly divided into three groups: (HF) with HF, treated with saline (0.9% NaCl); (HF-GHI), treated with 1 mk/kg/day recombinant human growth hormone (rhGH), and (HF-GH2) treated with 2 mg/kg/day rhGH. GH was injected, subcutaneously, daily for 2 weeks. A control group (sham; n = 12), with the same age of the others rats was evaluated to confirm data for AS. HF had lower IGF-I (insulin-like growth factor-I) than sham-operated rats, and both GH treatments normalized IGF-I level. HF-GH1 animals had lower lipid hydroperoxide (LH), LH/total antioxidant substances (TAS) and glutathione-reductase than HF. Glutathione peroxidase (GSH-Px), hydroxyacyl coenzyme-A dehydrogenase, lactate dehydrogenase(LDH) were higher in HF-GH1 than in HF. HF-GH2 compared with HF, had increased LH/TAS ratio, as well as decreased oxidized glutathione and LDH activity. Comparing the two GH doses, GSH-Px, superoxide dismutase and LDH were lower in HF-GH2 than in HF-GHI. In conclusion, GH effects were dose-dependent and both tested doses did not aggravate the heart dysfunction. The higher GH dose, 2 mg/kg exerted detrimental effects related to energy metabolism and oxidative stress. The lower dose, 1 mg/kg GH exerted beneficial effects enhancing antioxidant defences, reducing oxidative stress and improving energy generation in myocardium of rats with heart failure. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
1. The role of growth hormone (GH) in cardiac remodelling and function in chronic and persistent pressure overload-induced left ventricular hypertrophy has not been defined. The aim of the present study was to assess short-term GH treatment on left ventricular function and remodelling in rats with chronic pressure overload-induced hypertrophy.2. Twenty-six weeks after induction of ascending aortic stenosis (AAS), rats were treated with daily subcutaneous injections of recombinant human GH (1 mg/kg per day; AAS-GH group) or saline (AAS-P group) for 14 days. Sham-operated animals served as controls. Left ventricular function was assessed by echocardiography before and after GH treatment. Myocardial fibrosis was evaluated by histological analysis.3. Before GH treatment, AAS rats presented similar left ventricular function and structure. Treatment of rats with GH after the AAS procedure did not change bodyweight or heart weight, both of which were higher in the AAS groups than in the controls. After GH treatment, posterior wall shortening velocity (PWSV) was lower in the AAS-P group than in the control group. However, in the AAS-GH group, PWSV was between that in the control and AAS-P groups and did not differ significantly from either group. Fractional collagen (% of total area) was significantly higher in the AAS-P and AAS-GH groups compared with control (10.34 +/- 1.29, 4.44 +/- 1.37 and 1.88 +/- 0.88%, respectively; P < 0.05) and was higher still in the AAS-P group compared with the AAS-GH group.4. The present study has shown that short-term administration of GH to rats with chronic pressure overload-induced left ventricular hypertrophy induces cardioprotection by attenuating myocardial fibrosis.
Resumo:
Mitochondrial inner membrane uncoupling proteins (UCP) catalyze a proton conductance that dissipates the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCPs are involved in mitochondrial energy flow regulation and have been implicated in oxidative stress tolerance. Based on the global gene expression profiling datasets available for Arabidopsis thaliana, in this review we discuss the regulation of UCP gene expression during development and in response to stress, and provide interesting insights on the possible existence of epigenetic regulation of UCP expression.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diaphragm myopathy has been described in patients with heart failure (HF), with alterations in myosin heavy chains (MHC) expression. The pathways that regulate MHC expression during HF have not been described, and myogenic regulatory factors (MRFs) may be involved. The purpose of this investigation was to determine MRF mRNA expression levels in the diaphragm. Diaphragm muscle from both HF and control Wistar rats was studied when overt HF had developed, 22 days after monocrotaline administration. MyoD, myogenin and MRF4 gene expression were determined by RT-PCR and MHC isoforms by polyacrylamide gel electrophoresis. Heart failure animals presented decreased MHC IIa/IIx protein isoform and MyoD gene expression, without altering MHC I, IIb, myogenin and MRF4. Our results show that in HF, MyoD is selectively down-regulated, which might be associated with alterations in MHC IIa/IIx content. These changes are likely to contribute to the diaphragm myopathy caused by HF.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cellular and humoral immune response, as well as cytokine gene expression, was assessed in Nelore cattle with different degrees of resistance to Cooperia punctata natural infection. One hundred cattle (male, weaned, 11-12 months old), kept together on pasture, were evaluated. Faecal and blood samples were collected for parasitological and immunological assays. Based on nematode faecal egg counts (FEC) and worm burden, the seven most resistant and the eight most susceptible animals were selected. Tissue samples of the small intestine were collected for histological quantification of inflammatory cells and analysis of cytokine gene expression (IL-2, IL-4, IL-8, IL-1 2p35, IL-13, TNF-alpha, IFN-gamma, MCP-1, MCP-2, and MUC- 1) using real-time RT-PCR. Mucus samples were also collected for IgA levels determination. Serum IgG1 mean levels against C. punctata antigens were higher in the resistant group, but significant differences between groups were only observed 14 days after the beginning of the experiment against infective larvae (1-3) and 14 and 84 days against adult antigens. The resistant group also presented higher IgA levels against C. punctata (L3 and adult) antigens with significant difference 14 days after the beginning of the trial (P < 0.05). In the small-intestine mucosa, levels of IgA anti-L3 and anti-adult C. punctata were higher in the resistant group, compared with the susceptible group (P < 0.05). Gene expression of both T(H)2 cytokines (IL-4 and IL-13) in the resistant group and T(H)1 cytokines (IL-2, IL-1 2p35, IFN-gamma and MCP-1) in the susceptible group was up-regulated. Such results suggested that immune response to C. punctata was probably mediated by TH2 cytokines in the resistant group and by T(H)1 cytokines in the susceptible group. (C) 2008 Elsevier B.V. All rights reserved.