971 resultados para Block-belt dynamical systems
Resumo:
We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Recent progresses for non-zero total angular momentum J calculations of resonances including parallel computing models are also included and future directions in this field are discussed.
Resumo:
The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitold source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The Occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport Of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration of crustally derived felsic melts and incipient charnockite formation, resulting in an igneous charnockite - I-type granite - incipient charnockite association.
Resumo:
It is shown that there exists a triangle decomposition of the graph obtained from the complete graph of order v by removing the edges of two vertex disjoint complete subgraphs of orders u and w if and only if u, w, and v are odd, ((v)(2)) - ((u)(2)) - ((w)(2)) equivalent to 0 (mod 3), and v >= w + u + max {u, w}. Such decompositions are equivalent to group divisible designs with block size 3, one group of size u, one group of size w, and v - u - w groups of size 1. This result settles the existence problem for Steiner triple systems having two disjoint specified subsystems, thereby generalizing the well-known theorem of Doyen and Wilson on the existence of Steiner triple systems with a single specified subsystem. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Despite extensive progress on the theoretical aspects of spectral efficient communication systems, hardware impairments, such as phase noise, are the key bottlenecks in next generation wireless communication systems. The presence of non-ideal oscillators at the transceiver introduces time varying phase noise and degrades the performance of the communication system. Significant research literature focuses on joint synchronization and decoding based on joint posterior distribution, which incorporate both the channel and code graph. These joint synchronization and decoding approaches operate on well designed sum-product algorithms, which involves calculating probabilistic messages iteratively passed between the channel statistical information and decoding information. Channel statistical information, generally entails a high computational complexity because its probabilistic model may involve continuous random variables. The detailed knowledge about the channel statistics for these algorithms make them an inadequate choice for real world applications due to power and computational limitations. In this thesis, novel phase estimation strategies are proposed, in which soft decision-directed iterative receivers for a separate A Posteriori Probability (APP)-based synchronization and decoding are proposed. These algorithms do not require any a priori statistical characterization of the phase noise process. The proposed approach relies on a Maximum A Posteriori (MAP)-based algorithm to perform phase noise estimation and does not depend on the considered modulation/coding scheme as it only exploits the APPs of the transmitted symbols. Different variants of APP-based phase estimation are considered. The proposed algorithm has significantly lower computational complexity with respect to joint synchronization/decoding approaches at the cost of slight performance degradation. With the aim to improve the robustness of the iterative receiver, we derive a new system model for an oversampled (more than one sample per symbol interval) phase noise channel. We extend the separate APP-based synchronization and decoding algorithm to a multi-sample receiver, which exploits the received information from the channel by exchanging the information in an iterative fashion to achieve robust convergence. Two algorithms based on sliding block-wise processing with soft ISI cancellation and detection are proposed, based on the use of reliable information from the channel decoder. Dually polarized systems provide a cost-and spatial-effective solution to increase spectral efficiency and are competitive candidates for next generation wireless communication systems. A novel soft decision-directed iterative receiver, for separate APP-based synchronization and decoding, is proposed. This algorithm relies on an Minimum Mean Square Error (MMSE)-based cancellation of the cross polarization interference (XPI) followed by phase estimation on the polarization of interest. This iterative receiver structure is motivated from Master/Slave Phase Estimation (M/S-PE), where M-PE corresponds to the polarization of interest. The operational principle of a M/S-PE block is to improve the phase tracking performance of both polarization branches: more precisely, the M-PE block tracks the co-polar phase and the S-PE block reduces the residual phase error on the cross-polar branch. Two variants of MMSE-based phase estimation are considered; BW and PLP.
Resumo:
The Thouless-Anderson-Palmer (TAP) approach was originally developed for analysing the Sherrington-Kirkpatrick model in the study of spin glass models and has been employed since then mainly in the context of extensively connected systems whereby each dynamical variable interacts weakly with the others. Recently, we extended this method for handling general intensively connected systems where each variable has only O(1) connections characterised by strong couplings. However, the new formulation looks quite different with respect to existing analyses and it is only natural to question whether it actually reproduces known results for systems of extensive connectivity. In this chapter, we apply our formulation of the TAP approach to an extensively connected system, the Hopfield associative memory model, showing that it produces identical results to those obtained by the conventional formulation.
Resumo:
The aim of this work was to design and build an equipment which can detect ferrous and non-ferrous objects in conveyed commodities, discriminate between them and locate the object along the belt and on the width of the belt. The magnetic induction mechanism was used as a means of achieving the objectives of this research. In order to choose the appropriate geometry and size of the induction field source, the field distributions of different source geometries and sizes were studied in detail. From these investigations it was found the square loop geometry is the most appropriate as a field generating source for the purpose of this project. The phenomena of field distribution in the conductors was also investigated. An equipment was designed and built at the preliminary stages of thework based on a flux-gate magnetometer with the ability to detect only ferrous objects.The instrument was designed such that it could be used to detect ferrous objects in the coal conveyors of power stations. The advantages of employing this detector in the power industry over the present ferrous metal electromagnetic separators were also considered. The objectives of this project culminated in the design and construction of a ferrous and non-ferrous detector with the ability to discriminate between ferrous and non-ferrous metals and to locate the objects on the conveying system. An experimental study was carried out to test the performance of the equipment in the detection of ferrous and non-ferrous objects of a given size carried on the conveyor belt. The ability of the equipment to discriminate between the types of metals and to locate the object on the belt was also evaluated experimentally. The benefits which can be gained from the industrial implementations of the equipment were considered. Further topics which may be investigated as an extension of this work are given.
Resumo:
Distributed digital control systems provide alternatives to conventional, centralised digital control systems. Typically, a modern distributed control system will comprise a multi-processor or network of processors, a communications network, an associated set of sensors and actuators, and the systems and applications software. This thesis addresses the problem of how to design robust decentralised control systems, such as those used to control event-driven, real-time processes in time-critical environments. Emphasis is placed on studying the dynamical behaviour of a system and identifying ways of partitioning the system so that it may be controlled in a distributed manner. A structural partitioning technique is adopted which makes use of natural physical sub-processes in the system, which are then mapped into the software processes to control the system. However, communications are required between the processes because of the disjoint nature of the distributed (i.e. partitioned) state of the physical system. The structural partitioning technique, and recent developments in the theory of potential controllability and observability of a system, are the basis for the design of controllers. In particular, the method is used to derive a decentralised estimate of the state vector for a continuous-time system. The work is also extended to derive a distributed estimate for a discrete-time system. Emphasis is also given to the role of communications in the distributed control of processes and to the partitioning technique necessary to design distributed and decentralised systems with resilient structures. A method is presented for the systematic identification of necessary communications for distributed control. It is also shwon that the structural partitions can be used directly in the design of software fault tolerant concurrent controllers. In particular, the structural partition can be used to identify the boundary of the conversation which can be used to protect a specific part of the system. In addition, for certain classes of system, the partitions can be used to identify processes which may be dynamically reconfigured in the event of a fault. These methods should be of use in the design of robust distributed systems.
Resumo:
It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they can be generated by initially linear systems and the requirements for chaotic dynamics and characteristics need further elaboration. Three simplest physical models are considered as examples. In the first, dynamic chaos in the interaction of three linear oscillators is investigated. Analogous process is shown in the second model of electromagnetic wave scattering in a double periodical inhomogeneous medium occupying half-space. The third model is a linear parametric problem for the electromagnetic field in homogeneous dielectric medium which permittivity is modulated in time. © 2008 Springer Science+Business Media, LLC.
Resumo:
A study has been made of the anionic polymerisation of methyl methacrylate using butyllithium and polystyryl lithium as initiators and the effects of lithium chloride and aluminium alkyls on the molecular weight and molecular weight distributions. Diblock copolymers of styrene-b-methyl methacrylate were synthesised at -78oC in THF in the presence of lithium chloride, and at ambient temperatures in toluene in the presence of aluminium alkyls. Studies in the presence of lithium chloride showed that the polymerisation was difficult to control; there was no conclusive evidence of a living system and the polydispersity indices were between 1.5 and 3. However, using relatively apolar solvents, in the presence of aluminium alkyls, homopolymerisation of methyl methacrylate showed characteristics of a living polymerisation. An investigation of the effects of the structures of the lithium and aluminium alkyls on the efficiency of initiation showed that a t-butyllithium/triisobutylaluminium initiating system exhibited an efficiency of 80%, compared with lower efficiencies (typically 30%) for systems based on butyllithium/triethylaluminium.The polydispersity index was found to decrease from ∼2.2 to ∼1.5 when butyllithium was replaced by t-butyllithium. The efficiency of the initiator was found to be solely dependent on the size of the alkyl group of the aluminium component, whereas the polydispersity index was found to be solely dependent on the size of the alkyl group on the lithium component. The aluminium alkyl is thought to be co-ordinated to the ester carbonyl groups of both the monomer and polymer. There is a critical degree of polymerisation, at which point the rate of polymerisation decreases, which probably relates to a change in structure of the active chain end. Characterisation of poly(styrene )-b-poly(4-vinylpyridine) and poly(styrene)-b-poly(4-vinylpyridine methyl iodide) diblock copolymers using static light scattering techniques, showed the formation of star-shaped 'reverse' micelles when placed in toluene. Temperature effects on micellization behaviour are only exhibited for the unquaternised micelles, which showed characterisically lower aggregation numbers than their quaternised counterparts. A suitable solvent was not obtained for characterisation of the styrene-b-methyl methacrylate diblock copolymers synthesized.
Resumo:
The aim of this study was to use the transformation of anionic to metathesis polymerization to produce block co-polymers of styrene-b-pentenylene using WC16 /PStLi and WC16/PStLi/ AlEtC12 catalyst systems. Analysis of the products using SEC and 1H and 13C NMR spectroscopy enabled mechanisms for metathesis initiation reactions to be proposed. The initial work involved preparation of the constituent homo-polymers. Solutions of polystyryllithium in cyclohexane were prepared and diluted so that the [PStLi]o<2x10-3M. The dilution produced initial rapid decay of the active species, followed by slower spontaneous decay within a period of days. This was investigated using UV / visible spectrophotometry and the wavelength of maximum absorbance of the PStLi was found to change with the decay from an initial value of 328mn. to λmax of approximately 340nm. after 4-7 days. SEC analysis of solutions of polystyrene, using RI and UV / visible (set at 254nm.) detectors; showed the UV:RI peak area was constant for a range of polystyrene samples of different moleculor weight. Samples of polypentenylene were prepared and analysed using SEC. Unexpectedly the solutions showed an absorbance at 254nm. which had to be considered when this technique was used subsequently to analyse polymer samples to determine their styrene/ pentenylene co-polymer composition. Cyclohexane was found to be a poor solvent for these ring-opening metathesis polymerizations of cyclopentene. Attempts to produce styrene-b-pentenylene block co-polymers, using a range of co-catalyst systems, were generally unsuccessful as the products were shown to be mainly homopolymers. The character of the polymers did suggest that several catalytic species are present in these systems and mechanisms have been suggested for the formation of initiating carbenes. Evidence of some low molecular weight product with co-polymer character has been obtained. Further investigation indicated that this is most likely to be ABA block copolymer, which led to a mechanism being proposed for the termination of the polymerization.
Resumo:
This thesis introduces and develops a novel real-time predictive maintenance system to estimate the machine system parameters using the motion current signature. Recently, motion current signature analysis has been addressed as an alternative to the use of sensors for monitoring internal faults of a motor. A maintenance system based upon the analysis of motion current signature avoids the need for the implementation and maintenance of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion current signature, the research described in this thesis implements a novel real-time predictive maintenance system for current and future manufacturing machine systems. A crucial concept underpinning this project is that the motion current signature contains information relating to the machine system parameters and that this information can be extracted using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of concept procedure is performed, which substantiates this concept. A simulation model, TuneLearn, is developed to simulate the large amount of training data required by the neural network approach. Statistical validation and verification of the model is performed to ascertain confidence in the simulated motion current signature. Validation experiment concludes that, although, the simulation model generates a good macro-dynamical mapping of the motion current signature, it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding performance of higher order and nonlinear factors, such as backlash and compliance. Failure of the simulation model to determine the micro-dynamical structure suggests the presence of nonlinearity in the motion current signature. This motivated us to perform surrogate data testing for nonlinearity in the motion current signature. Results confirm the presence of nonlinearity in the motion current signature, thereby, motivating the use of nonlinear techniques for further analysis. Outcomes of the experiment show that nonlinear noise reduction combined with the linear reverse algorithm offers precise machine system parameter estimation using the motion current signature for the implementation of the real-time predictive maintenance system. Finally, a linear reverse algorithm, BJEST, is developed and applied to the motion current signature to estimate the machine system parameters.
Resumo:
This exploratory study is concerned with the integrated appraisal of multi-storey dwelling blocks which incorporate large concrete panel systems (LPS). The first step was to look at U.K. multi-storey dwelling stock in general, and under the management of Birmingham City Council in particular. The information has been taken from the databases of three departments in the City of Birmingham, and rearranged in a new database using a suite of PC software called `PROXIMA' for clarity and analysis. One hundred of their stock were built large concrete panel system. Thirteen LPS blocks were chosen for the purpose of this study as case-studies depending mainly on the height and age factors of the block. A new integrated appraisal technique has been created for the LPS dwelling blocks, which takes into account the most physical and social factors affecting the condition and acceptability of these blocks. This appraisal technique is built up in a hierarchical form moving from the general approach to particular elements (a tree model). It comprises two main approaches; physical and social. In the physical approach, the building is viewed as a series of manageable elements and sub-elements to cover every single physical or environmental factor of the block, in which the condition of the block is analysed. A quality score system has been developed which depends mainly on the qualitative and quantitative conditions of each category in the appraisal tree model, and leads to physical ranking order of the study blocks. In the social appraisal approach, the residents' satisfaction and attitude toward their multi-storey dwelling block was analysed in relation to: a. biographical and housing related characteristics; and b. social, physical and environmental factors associated with this sort of dwelling, block and estate in general.The random sample consisted of 268 residents living in the 13 case study blocks. Data collected was analysed using frequency counts, percentages, means, standard deviations, Kendall's tue, r-correlation coefficients, t-test, analysis of variance (ANOVA) and multiple regression analysis. The analysis showed a marginally positive satisfaction and attitude towards living in the block. The five most significant factors associated with the residents' satisfaction and attitude in descending order were: the estate, in general; the service categories in the block, including heating system and lift services; vandalism; the neighbours; and the security system of the block. An important attribute of this method, is that it is relatively inexpensive to implement, especially when compared to alternatives adopted by some local authorities and the BRE. It is designed to save time, money and effort, to aid decision making, and to provide ranked priority to the multi-storey dwelling stock, in addition to many other advantages. A series of solution options to the problems of the block was sought for selection and testing before implementation. The traditional solutions have usually resulted in either demolition or costly physical maintenance and social improvement of the blocks. However, a new solution has now emerged, which is particularly suited to structurally sound units. The solution of `re-cycling' might incorporate the reuse of an entire block or part of it, by removing panels, slabs and so forth from the upper floors in order to reconstruct them as low-rise accommodations.
Resumo:
Multiple-antenna systems offer significant performance enhancement and will be applied to the next generation broadband wireless communications. This thesis presents the investigations of multiple-antenna systems – multiple-input multiple-output (MIMO) and cooperative communication (CC) – and their performances in more realistic propagation environments than those reported previously. For MIMO systems, the investigations are conducted via theoretical modelling and simulations in a double-scattering environment. The results show that the variations of system performances depend on how scatterer density varies in flat fading channels, and that in frequency-selective fading channels system performances are affected by the length of the coding block as well as scatterer density. In realistic propagation environments, the fading correlation also has an impact on CC systems where the antennas can be further apart than those in MIMO systems. A general stochastic model is applied to studying the effects of fading correlation on the performances of CC systems. This model reflects the asymmetry fact of the wireless channels in a CC system. The results demonstrate the varied effects of fading correlation under different protocols and channel conditions. Performances of CC systems are further studied at the packet level, using both simulations and an experimental testbed. The results obtained have verified various performance trade-offs of the cooperative relaying network (CRN) investigated in different propagation environments. The results suggest that a proper selection of the relaying algorithms and other techniques can meet the requirements of quality of service for different applications.
Resumo:
In the present paper the results from designing of device, which is a part of the automated information system for counting, reporting and documenting the quantity of produced bottles in a factory for glass processing are presented. The block diagram of the device is given. The introduced system can be applied in other discrete productions for counting of the quantity of bottled production.