966 resultados para Bivalent transition metal
Resumo:
A quinoxalina e seus derivativos são uma importante classe de compostos heterocíclicos, onde os elementos N, S e O substituem átomos de carbono no anel. A fórmula molecular da quinoxalina é C8H6N2, formada por dois anéis aromáticos, benzeno e pirazina. É rara em estado natural, mas a sua síntese é de fácil execução. Modificações na estrutura da quinoxalina proporcionam uma grande variedade de compostos e actividades, tais como actividades antimicrobiana, antiparasitária, antidiabética, antiproliferativa, anti-inflamatória, anticancerígena, antiglaucoma, antidepressiva apresentando antagonismo do receptor AMPA. Estes compostos também são importantes no campo industrial devido, por exemplo, ao seu poder na inibição da corrosão do metal. A química computacional, ramo natural da química teórica é um método bem desenvolvido, utilizado para representar estruturas moleculares, simulando o seu comportamento com as equações da física quântica e clássica. Existe no mercado uma grande variedade de ferramentas informaticas utilizadas na química computacional, que permitem o cálculo de energias, geometrias, frequências vibracionais, estados de transição, vias de reação, estados excitados e uma variedade de propriedades baseadas em várias funções de onda não correlacionadas e correlacionadas. Nesta medida, a sua aplicação ao estudo das quinoxalinas é importante para a determinação das suas características químicas, permitindo uma análise mais completa, em menos tempo, e com menos custos.
Resumo:
There is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.
Resumo:
Hoje em dia, a prevenção dos resíduos de metais é uma questão muito importante para um grande número de empresas, pois necessitam optimizar o seu sistema de tratamento de águas residuais a fim de alcançarem os limites legais dos teores em iões metálicos e poderem efectuar a descarga das águas residuais no domínio hídrico público. Devido a esta problemática foram efectuados estudos inovadores relacionados com a remoção de iões metálicos de águas residuais, verificando-se que as tecnologias de membrana oferecem uma série de vantagens para o efeito. Uma dessas tecnologias, referida como Membrana Líquida de Suporte (SLM), é baseada num mecanismo de extracção. A membrana hidrofóbica, impregnada com uma solução extractora, funciona como barreira entre a água residual e uma solução, geralmente ácida. A diferença de pH entre a água residual e a solução actua como força motriz para o transporte de iões metálicos da água residual para a referida solução. Poderá ocorrer um problema de falta de estabilidade, resultante da possível fuga da solução extractora para fora dos poros das membranas. Estudos anteriores mostraram que os ácidos alquilfosfóricos ou ácidos fosfónicos, como os reagentes D2EHPA e CYANEX e hidroxioximas como o LIX 860-I podem ser muito úteis para a extração de iões metálicos como ferro, cobre, níquel, zinco e outros. A clássica extracção líquido-líquido também tem mostrado que a mistura de diferentes extractores pode ter um efeito sinergético. No entanto, não é claro que haja um efeito óptimo da razão de extractor ou que tipo de complexo é formado durante o processo de extracção. O objectivo deste projecto é investigar este comportamento sinergético e as complexas formações por meio de um método espectrofotométrico, o “Job’s method” e “Mole-ratio method”. Estes métodos são utilizados para estimar a estequiometria dos vários complexos entre dois solutos, a partir da variação de absorvância dos complexos quando comparado com a absorvância do soluto. Com este projecto, o Job’s method e mole-ratio method serão aplicados a um sistema de três componentes, para conseguir mais informações sobre a complexação de níquel (II) e a fim de determinar a razão extractor: metal dos complexos formados durante a aplicação de mistura de extractores D2EHPA e LIX 860-I. Segundo Job’s method a elavada absorvância situa-se na região de 0,015-0,040 M de LIX 860-I e uma baixa concentração de D2EHPA. Quando as diferentes experiências são encontradas num conjunto experimental foram avaliadas de acordo com o método de trabalho, o valor máximo do gráfico foi encontrado para uma baixa fração molar do ião metálico e uma maior concentração de D2EHPA. Esta mudança foi encontrado de 0,50 até 0,30, que poderia apontar para a direção da formação de diferentes complexos. Para o Mole-Ratio method, a estequiometria dos complexos metal pode ser determinada a partir do ponto de intersecção das linhas tangente do gráfico da absorbância versus a concentração do ligante. Em todos os casos, o máximo foi obtido em torno de uma concentração total de 0,010 M. Quando D2EHPA foi aplicado sozinho, absorvâncias muito baixos foram obtidas.
Resumo:
This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm 3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.
Resumo:
In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tertbutyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metalresistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49–182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.
Resumo:
The 41 years of armed conflict (1961 to 2002) resulted in a poor development of the health care and education infrastructures, and forced the relocation of people to safer places, namely major urban cities like Luanda. This phase was characterized by typical demographic, nutritional and epidemiological profiles. With the end of this period Angola has been repeatedly ranked as one of the three fastest growing economies in the world, and along with the social stabilization and globalization, the country is facing the introduction of new medical technologies, improvement of health sys-tems and services, better access to them, and overall better quality of life. These changes could also be translating into socio-cultural, demographic and nutritional changes which in turn may leading to changes in the epidemiological profile of the country. Thus, the emergence of non-communicable diseases are likely to become an increasingly im-portant public health problem in Angola. Also, considering that several infectious diseases persist, our weakened health system will have to face a double burden. Thus, disease surveillance data on non-communicable diseases to determine their prevalence and impact, along with the major behavioural risk factors like consumption of tobacco, alcohol, diets and physical inactivity are urgently needed.
Resumo:
On 25 April 1974 the Armed Forces Movement (MFA – Movimento das Forças Armadas) rose against the dictatorial regime that had governed Portugal for 48 years. This event was the beginning of a turbulent transition process that was to culminate in the approval of a new constitution in April 1976 and in the instauration of a Western style pluralist democracy. There are many political scientists and historians who note the original and unexpected nature of this transition; however, there are very many different interpretations with respect to the roles played by each of the actors in the process: the armed forces, the parties and political movements and the social forces/movements. The aim of this paper is to clarify this matter through an examination of the principal events of the revolution.
Resumo:
In this work, tin selenide thin films (SnSex) were grown on soda lime glass substrates by selenization of dc magnetron sputtered Sn metallic precursors. Selenization was performed at maximum temperatures in the range 300 °C to 570 °C. The thickness and the composition of the films were analysed using step profilometry and energy dispersive spectroscopy, respectively. The films were structurally and optically investigated by X-ray diffraction, Raman spectroscopy and optical transmittance and reflectance measurements. X-Ray diffraction patterns suggest that for temperatures between 300 °C and 470 °C, the films are composed of the hexagonal-SnSe2 phase. By increasing the temperature, the films selenized at maximum temperatures of 530 °C and 570 °C show orthorhombic-SnSe as the dominant phase with a preferential crystal orientation along the (400) crystallographic plane. Raman scattering analysis allowed the assignment of peaks at 119 cm−1 and 185 cm−1 to the hexagonal-SnSe2 phase and those at 108 cm−1, 130 cm−1 and 150 cm−1 to the orthorhombic-SnSe phase. All samples presented traces of condensed amorphous Se with a characteristic Raman peak located at 255 cm−1. From optical measurements, the estimated band gap energies for hexagonal-SnSe2 were close to 0.9 eV and 1.7 eV for indirect forbidden and direct transitions, respectively. The samples with the dominant orthorhombic-SnSe phase presented estimated band gap energies of 0.95 eV and 1.15 eV for indirect allowed and direct allowed transitions, respectively.
Resumo:
Thin films of Cu2SnS3 and Cu3SnS4 were grown by sulfurization of dc magnetron sputtered Sn–Cu metallic precursors in a S2 atmosphere. Different maximum sulfurization temperatures were tested which allowed the study of the Cu2SnS3 phase changes. For a temperature of 350 ◦C the films were composed of tetragonal (I -42m) Cu2SnS3. The films sulfurized at a maximum temperature of 400 ◦C presented a cubic (F-43m) Cu2SnS3 phase. On increasing the temperature up to 520 ◦C, the Sn content of the layer decreased and orthorhombic (Pmn21) Cu3SnS4 was formed. The phase identification and structural analysis were performed using x-ray diffraction (XRD) and electron backscattered diffraction (EBSD) analysis. Raman scattering analysis was also performed and a comparison with XRD and EBSD data allowed the assignment of peaks at 336 and 351 cm−1 for tetragonal Cu2SnS3, 303 and 355 cm−1 for cubic Cu2SnS3, and 318, 348 and 295 cm−1 for the Cu3SnS4 phase. Compositional analysis was done using energy dispersive spectroscopy and induced coupled plasma analysis. Scanning electron microscopy was used to study the morphology of the layers. Transmittance and reflectance measurements permitted the estimation of absorbance and band gap. These ternary compounds present a high absorbance value close to 104 cm−1. The estimated band gap energy was 1.35 eV for tetragonal (I -42m) Cu2SnS3, 0.96 eV for cubic (F-43m) Cu2SnS3 and 1.60 eV for orthorhombic (Pmn21) Cu3SnS4. A hot point probe was used for the determination of semiconductor conductivity type. The results show that all the samples are p-type semiconductors. A four-point probe was used to obtain the resistivity of these samples. The resistivities for tetragonal Cu2SnS3, cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4 are 4.59 × 10−2 cm, 1.26 × 10−2 cm, 7.40 × 10−4 cm, respectively.
Resumo:
Consider the problem of non-migratively scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type heterogeneous multiprocessor platform. We ask the following question: Does there exist a phase transition behavior for the two-type heterogeneous multiprocessor scheduling problem? We also provide some initial observations via simulations performed on randomly generated task sets.
Resumo:
Systems composed of distinct operational modes are a common necessity for embedded applications with strict timing requirements. With the emergence of multi-core platforms protocols to handle these systems are required in order to provide this basic functionality.In this work a description on the problems of creating an effective mode-transition protocol are presented and it is proven that in some cases previous single-core protocols can not be extended to handle the mode-transition in multi-core.
Resumo:
We consider the global scheduling problem of multimode real-time systems upon identical multiprocessor platforms. During the execution of a multimode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Thereby, ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. In this paper, we extend the synchronous transition protocol SM-MSO in order to take into account mode-independent tasks [1], i.e., tasks of which the execution pattern must not be jeopardized by the mode changes.
Resumo:
The aim of the TeleRisk Project on labour relations and professional risks within the context of teleworking in Portugal – supported by IDICT – Institute for Development and Inspection of Working Conditions (Ministry of Labour), is to study the practices and forms of teleworking in the manufacturing sectors in Portugal. The project chose also the software industry as a reference sector, even though it does not intend to exclude from the study any other sector of activity or the so-called “hybrid” forms of work. However, the latter must have some of the characteristics of telework. The project thus takes into account the so-called “traditional” sectors of activity, namely textile and machinery and metal engineering (machinery and equipment), not usually associated to this type of work. However, telework could include, in the so-called “traditional” sectors, other variations that are not found in technologically based sectors. One of the evaluation methods for the dynamics associated to telework consisted in carrying out surveys by means of questionnaires, aimed at employers in the sectors analysed. This paper presents some of the results of those surveys. It is important to mention that, being a preliminary analysis, it means that it does not pretend to have exhausted all the issues in the survey, but has meant that it shows the bigger tendencies, in terms of teleworking practices, of the Portuguese industry.
Resumo:
The present study aims to characterize ultrafine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and to evaluate the effect of metal transfer modes, controlled by both processing parameters and shielding gas composition, on the quantity and morphology of the ultrafine particles. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the main welding parameters, namely the current intensity and the heat input of the Welding process. The emission of airborne ultrafine particles increases with the current intensity as fume formation rate does. When comparing the shielding gas mixtures, higher emissions were observed for more oxidizing mixtures, that is, with higher CO2 content, which means that these mixtures originate higher concentrations of ultrafine particles (as measured by number of particles. by cubic centimeter of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding welders exposure.
Resumo:
The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.