902 resultados para Biomedical databases
Resumo:
Ultrasonic speed of propagation and attenuation were investigated as a function of absorbed radiation dose in PAG and MAGIC polymer gel dosimeters. Both PAG and MAGIC gel dosimeters displayed a dependence of ultrasonic parameters on absorbed dose with attenuation displaying significant changes in the dose range investigated. The ultrasonic attenuation dose sensitivity at 4 MHz in MAGIC gels was determined to be 4.7 +/- 0.3 dB m(-1) Gy(-1) and for PAG 3.9 +/- 0.3 dB m(-1) Gy(-1). Ultrasonic speed dose sensitivities were 0.178 +/- 0.006 m s(-1) Gy(-1) for MAGIC gel and -0.44 +/- 0.02 m s(-1) Gy(-1) for PAG. Density and compressional elastic modulus were investigated to explain the different sensitivities of ultrasonic speed to radiation for PAG and MAGIC gels. The different sensitivities were found to be due to differences in the compressional elastic modulus as a function of dose for the two formulations. To understand the physical phenomena underlying the increase in ultrasonic attenuation with dose, the viscoelastic properties of the gels were studied. Results suggest that at ultrasonic frequencies, attenuation in polymer gel dosimeters is primarily due to volume viscosity. It is concluded that ultrasonic attenuation significantly increases with absorbed dose. Also, the ultrasonic speed in polymer gel dosimeters is affected by changes in dosimeter elastic modulus that are likely to be a result of polymerization. It is suggested that ultrasound is a sufficiently sensitive technique for polymer gel dosimetry.
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The emphasis of this work is on the optimal design of MRI magnets with both superconducting coils and ferromagnetic rings. The work is directed to the automated design of MRI magnet systems containing superconducting wire and both `cold' and `warm' iron. Details of the optimization procedure are given and the results show combined superconducting and iron material MRI magnets with excellent field characteristics. Strong, homogeneous central magnetic fields are produced with little stray or external field leakage. The field calculations are performed using a semi-analytical method for both current coil and iron material sources. Design examples for symmetric, open and asymmetric clinical MRI magnets containing both superconducting coils and ferromagnetic material are presented.
Resumo:
Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model.
Resumo:
Magnetic resonance imaging (MRI) magnets have very stringent constraints on the homogeneity of the static magnetic field that they generate over desired imaging regions. The magnet system also preferably generates very little stray field external to its structure, so that ease of siting and safety are assured. This work concentrates on deriving, means of rapidly computing the effect of 'cold' and 'warm' ferromagnetic material in or around the superconducting magnet system, so as to facilitate the automated design of hybrid material MR magnets. A complete scheme for the direct calculation of the spherical harmonics of the magnetic field generated by a circular ring of ferromagnetic material is derived under the conditions of arbitrary external magnetizing fields. The magnetic field produced by the superconducting coils in the system is computed using previously developed methods. The final, hybrid algorithm is fast enough for use in large-scale optimization methods. The resultant fields from a practical example of a 4 T, clinical MRI magnet containing both superconducting coils and magnetic material are presented.
Resumo:
The past decade has witnessed an increasing concerns over the effectiveness of project-based development assistance and the promotion of sector-wide approaches (SWAps) to health as a means to increase donor collaboration, consolidate local management of resources and undertake the policy and systems reform necessary to achieve a greater impact on health issues. The concept has gained the support of both the World Bank and the World Health Organisation, as well as key bilateral donors, and dominates current initiatives in development assistance for health. This paper examines the proposal of SWAps as rhetoric, and seeks to understand how that rhetoric functions, despite the variable application of its constituent elements and the range of contexts in which it operates. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Augmentation strategies in schizophrenia treatment remain an important issue because despite the introduction of several new antipsychotics, many patients remain treatment resistant. The aim of this study was to undertake a systematic review and meta-analysis of the safety and efficacy of one frequently used adjunctive compound: carbamazepine. Data sources and study selection: Randomized controlled trials comparing carbamazopine (as a sole or as an adjunctive compound) with placebo or no intervention in participants with schizophrenia or schizoaffective disorder were searched for by accessing 7 electronic databases, cross-referencing publications cited in pertinent studies, and contacting drug companies that manufacture carbamazepine. Method: The identified studies were independently inspected and their quality assessed by 2 reviewers, Because the study results were generally incompletely reported, original patient data were requested from the authors; data were received for 8 of the 10 randomized controlled trials included in the present analysis, allowing for a reanalysis of the primary data. Dichotomous variables were analyzed using the Mantel-Haenszel odds ratio and continuous data were analyzed using standardized mean differences, both specified with 95% confidence intervals. Results: Ten studies (total N = 283 subjects) were included. Carbamazepine was not effective in preventing relapse in the only randomized controlled trial that compared carbamazepine monotherapy with placebo. Carbamazepine tended to be less effective than perphenazine in the only trial comparing carbamazepine with an antipsychotic. Although there was a trend indicating a benefit from carbamazepine as an adjunct to antipsychotics, this trend did not reach statistical significance. Conclusion: At present, this augmentation strategy cannot be recommended for routine use. The most promising targets for future trials are patients with excitement, aggression, and schizoaffective disorder bipolar type.
Resumo:
The vertebrate Slit gene family currently consists of three members;Slit1,Slit2 and Slit3. Each gene encodes a protein containing multiple epidermal growth factor and leucine rich repeat motifs, which are likely to have importance in cell-cell interactions. In this study, we sought to fully define and characterise the vertebrate Slit gene family. Using long distance PCR coupled with in silico mapping, we determined the genomic structure of all three Slit genes in mouse and man. Analysis of EST and genomic databases revealed no evidence of further Slit family members in either organism. All three Slit genes were encoded by 36 (Slit3) or 37 (Slit1 and Slit2) exons covering at least 143 kb or 183 kb of mouse or human genomic DNA respectively. Two additional potential leucine-rich repeat encoding exons were identified within intron 12 of Slit2. These could be inserted in frame, suggesting that alternate splicing may occur in Slit2 A search for STS sequences within human Slit3 anchored this gene to D5S2075 at the 5' end (exon 4) and SGC32449 within the 3' UTR, suggesting that Slit3 may cover greater than 693 kb. The genomic structure of all Slit genes demonstrated considerable modularity in the placement of exon-intron boundaries such that individual leucine-rich repeat motifs were encoded by individual 72 by exons. This further implies the potential generation of multiple Slit protein isoforms varying in their number of repeat units. cDNA library screening and EST database searching verified that such alternate splicing does occur.
Resumo:
A general overview of the protein sequence set for the mouse transcriptome produced during the FANTOM2 sequencing project is presented here. We applied different algorithms to characterize protein sequences derived from a nonredundant representative protein set (RPS) and a variant protein set (VPS) of the mouse transcriptome. The functional characterization and assignment of Gene Ontology terms was done by analysis of the proteome using InterPro. The Superfamily database analyses gave a detailed structural classification according to SCOP and provide additional evidence for the functional characterization of the proteome data. The MDS database analysis revealed new domains which are not presented in existing protein domain databases. Thus the transcriptome gives us a unique source of data for the detection of new functional groups. The data obtained for the RPS and VPS sets facilitated the comparison of different patterns of protein expression. A comparison of other existing mouse and human protein sequence sets (e.g., the International Protein Index) demonstrates the common patterns in mammalian proteornes. The analysis of the membrane organization within the transcriptome of multiple eukaryotes provides valuable statistics about the distribution of secretory and transmembrane proteins
Resumo:
Emerging infectious diseases, such as severe acute respiratory syndrome (SARS), are of huge economic importance. They are difficult to predict. The World Health Organization has a Global Outbreak Alert and Response Network, which was involved at an early stage in the SARS outbreak in 2003. Three major lessons were learned as a result of the SARS epidemic in 2003, involving communication, evidence-based action and global partnerships. It is proposed that a series of broadband global response networks should be developed. At a technical level the networks are essentially in place, such as the Internet2 global network. Suitable peripheral devices also exist. What has not yet been created is the appropriate software to allow the use of these networks, although a number of commercial products are in the process of development.
Resumo:
Peer support interventions for people with cancer, their families, and friends have been widely used throughout the world. The present study reviewed the research literature on psychosocial oncology over the past decade to assess the prevalence and contribution of articles on peer support. Using CD-Rom databases, 25 articles were retrieved for review. In each article, patients or their family members were the target group for supportive interventions, which were primarily for the delivery of peer support and included either a qualitative or quantitative evaluation of the program. A definitional taxonomy for peer support interventions, which identified eight discrete settings, was derived from three key dimensions: style of supervision, interpersonal context, and mode of delivery. The studies suggested that peer support programs help by providing emotional and informational support from the perspective of shared personal experience. However, a paucity of research-particularly randomized controlled trials-was noted. The reasons may include inherent difficulties in isolating for study what is essentially a naturalistically occurring interpersonal dynamic from the complex social and community contexts from which it emanates. The authors discuss the gap between practice and theory in this area and recommend a broader and more inclusive view of supportive care for people with cancer. (C) 2003 by The Haworth Press, Inc. All rights reserved.
Resumo:
This paper describes a coupled knowledge-based system (KBS) for the design of liquid-retaining structures, which can handle both the symbolic knowledge processing based on engineering heuristics in the preliminary synthesis stage and the extensive numerical crunching involved in the detailed analysis stage. The prototype system is developed by employing blackboard architecture and a commercial shell VISUAL RULE STUDIO. Its present scope covers design of three types of liquid-retaining structures, namely, a rectangular shape with one compartment, a rectangular shape with two compartments and a circular shape. Through custom-built interactive graphical user interfaces, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking and member sizing optimization. It is also integrated with various relational databases that provide the system with sectional properties, moment and shear coefficients and final member details. This system can act as a consultant to assist novice designers in the design of liquid-retaining structures with increase in efficiency and optimization of design output and automated record keeping. The design of a typical example of the liquid-retaining structure is also illustrated. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
A method is presented for calculating the currents and winding patterns required to design independent zonal and tesseral shim coils for magnetic resonance imaging. Both actively shielded and unshielded configurations are considered, and the region of interest can be located asymmetrically with respect to the coil's length. Streamline, target-field and Fourier-series methods are utilized. The desired target-field is specified at two cylindrical radii, on and inside a circular conducting cylinder of length 2L and radius a. The specification is over some asymmetric portion pL < z < qL of the coil's length (-1 < p < q < 1). Arbitrary functions are used in the outer sections, -L < z < pL and qL < z < L, to ensure continuity of the magnetic field across the entire length of the coil. The entire field is then periodically extended as a half-range cosine Fourier series about either end of the coil. The resultant Fourier coefficients are then substituted into the Fourier-series expressions for the internal and external magnetic fields, and current densities and stream functions on both the primary coil and shield. A contour plot of the stream function directly gives the required coil winding patterns. Spherical harmonic analysis and shielding analysis on field calculations from a ZX shim coil indicate that example designs and theory are well matched.
Resumo:
Prior theoretical studies indicate that the negative spatial derivative of the electric field induced by magnetic stimulation may he one of the main factors contributing to depolarization of the nerve fiber. This paper studies this parameter for peripheral nerve stimulation (PNS) induced by time.-varying gradient fields during MRI scans. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic human, full-body model. Whole-body cylindrical and planar gradient sets in MRI systems and various input signals have been explored. The spatial distributions of the induced electric field and their gradients are calculated and attempts are made to correlate these areas with reported experimental stimulation data. The induced electrical field pattern is similar for both the planar coils and cylindrical coils. This study provides some insight into the spatial characteristics of the induced field gradients for PNS in MRI, which may be used to further evaluate the sites where magnetic stimulation is likely to occur and to optimize gradient coil design.