924 resultados para Bio fuels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green innovation, which enables us to extract energy from food crops, caused a food shortage in 2008. Countries suffering severe damage started to reconsider their agricultural policy with the aim of becoming more autonomous. The food price hike of the time looks like a reversal of the celebrated Singer-Prebisch thesis proposed in the 1950s. This paper examines the consequences of this trend on the comparative advantages and development strategies of developing countries. For that purpose, first, trends and short-run fluctuations in the prices of fuel and bio-energy crops are investigated. It is shown that the price series of fuels and the crops are synchronized only after the fuel extracting technology came into effect. Second, the reversal of the Singer-Prebisch thesis is underpinned by the generic form of an endogenous growth model developed by Rebelo (1991). It is shown that as an economy grows, appreciation of the non-reproducible, such as mineral resources and raw labor, over the reproducible, such as capital goods, is the norm rather than an anomaly. Third, the consequences of the food price hike and underlying capital accumulation on the development strategies of labor-abundant and low-income countries are explored. It is concluded that the impact of the food price hikes on the alteration of a development strategy is only incremental, without reinforcement from raw-labor-saving innovation. A case study of inventions by JUKI Corporation, a world-leader in the sewing machine market exemplifies the fact that, of all the major inventions the company have made, raw-labor-saving inventions have not dominated, although JUKI's machines are sold to one of the most raw-labor-intensive industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe our current work on bio-inspired locomotion systems using a deformable structure and smart materials, concretely Shape Memory Alloys, exploring the possibility of building motor-less and gear-less robots. A swimming underwater robot has been developed whose movements are generated using such actuators, used for bending the backbone of the fish, which in turn causes a change on the curvature of the body. This paper focuses on how standard swimming patterns can be reproduced with the proposed design, using an actuation dynamics model identified in prior work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary algorithm is responsible of making the system evolve towards the required performance. A prototype has been implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving image compression for specific types of images. An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. To check the robustness of the system and its adaptation capabilities, different types of images have been selected as validation patterns. A direct application of such a system is its deployment in an unknown environment during design time, letting the calibration phase adjust the system parameters so that it performs efcient image compression. Also, this prototype implementation may serve as an accelerator for the automatic design of evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the final implementation device, whether it is a HW or SW based computing device. The architecture has been built in a modular way so that it can be easily extended to adapt other types of image processing cores. Details on this pluggable component point of view are also given in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis and simulation of the behaviour of gas turbines for power generation using different nonconventional fuels obtained from different renewable sources are presented. Three biomass-tobiofuel processes are considered: anaerobic digestion of biomass (biogas), biomass gasification (synthesis gas) and alcoholic fermentation of biomass and dehydration (bioethanol), each of them with two different biomass substrates (energy crops and municipal solid waste) as input. The gas turbine behaviour in a Brayton cycle is simulated both in an isolated operation and in combined cycle. The differences in gas turbine performance when fired with the considered biofuels compared to natural gas are studied from different points of view related with the current complex energetic context: energetic and exergetic efficiency of the simple/combined cycle and CO2 emissions. Two different tools have been used for the simulations, each one with a different approach: while PATITUG (own software) analyses the behaviour of a generic gas turbine allowing a total variability of parameters, GT-PRO (commercial software) is more rigid, albeit more precise in the prediction of real gas turbine behaviour. Different potentially interesting configurations and its thermodynamic parameters have been simulated in order to obtain the optimal range for all of them and its variation for each fuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to significant reduction of CO2 emissions using an existing combustion technology, although significant changes seem to be needed and further technological development is necessary. The goal of this work is to perform energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas), compared with natural gas. The global energy transformation process (i.e. from biomass to electricity) has also been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish the aims of this work. The results suggest a high interest and the technical viability of the use of Biomass Integrated Gasification Combined Cycle (BIGCC) systems for large scale power generation.