900 resultados para Barrett esophagus
Resumo:
Observations of hummock and string-like microrelief features were made in High Arctic hydric meadows. Thermal shearing of thick bryophyte mats, and subsequent roll back during spring flooding appears to be one way in which this topography is formed. Hummocky and non-hummocky (flat) meadows show distinct floristic differences which may in part be due to observed differences in temperature, nutrient concentrations and moisture relations.
Resumo:
Stable oxygen analyses and snow accumulation rates from snow pits sampled in the McMurdo Dry Valleys have been used to reconstruct variations in summer temperature and moisture availability over the last four decades. The temperature data show a common interannual variability, with strong regional warmings occurring especially in 1984/85, 1995/96 and 1990/91 and profound coolings during 1977/78, 1983/84, 1988/89, 1993/94, and 1996/97. Annual snow accumulation shows a larger variance between sites, but the early 1970s, 1984, 1997, and to a lesser degree 1990/91 are characterized overall by wetter conditions, while the early and late 1980s show low snow accumulation values. Comparison of the reconstructed and measured summer temperatures with the Southern Oscillation Index (SOI) and the Antarctic Oscillation (AAO) yield statistically significant correlations, which improve when phase-relationships are considered. A distinct change in the phase relationship of the correlation is observed, with the SOI-AAO leading over the temperature records by one year before, and lagging by one year after 1988. These results suggest that over the last two decades summer temperatures are influenced by opposing El Niño Southern Oscillation and AAO forcings and support previous studies that identified a change in the Tropical-Antarctic teleconnection between the 1980s and 1990s.
Resumo:
In recent years, metalliferous sediments have been discovered overlying newly generated oceanic crust in the East Pacific, North Atlantic, Indian Ocean, Red Sea, Gulf of Aden, and elsewhere (e.g., Boström, 1973; Lalou et al., 1977; Bischoff, 1969; Boström and Fisher, 1971; Cann et al., 1977, respectively). Such material has also been recovered by drilling from sediments lying upon older oceanic crust (Boström et al., 1972, 1976; Horowitz and Cronan, 1976). Hydrothermal circulation of seawater at a spreading ridge results in the leaching of Fe, Mn, and possibly other elements from the basaltic volcanic layer and their transport and discharge into ocean bottom waters, whereupon fine-grained Fe-Mn-rich precipitates form and settle into the ambient sediment (cf. Corliss, 1971; Dasch et al., 1971; Spooner and Fyfe, 1973; Bischoff and Dickson, 1975; Heath and Dymond, 1977; Corliss et al., 1979, Edmond et al., 1979). Mn-rich crusts have also been recovered from active ridges and are inferred to have formed in the vicinity of hydrothermal discharge areas (Scott et al., 1974; Moore and Vogt, 1976; Corliss et al., 1978; Hoffert et al., 1978). The source of the trace elements in the metalliferous deposits is generally not clear. They may be derived from seawater by adsorption onto the precipitates or crusts, or from hydrothermal solutions which have leached them from the basalts. Pb, however, can be used as a geochemical tracer because of the known isotopic compositional differences between oceanic basalts and seawater. Isotopic investigations of Pb in ferruginous sediments from the East Pacific have shown that it has been derived partly or mostly from a basaltic source (Bender et al., 1971; Dasch et al., 1971; Dymond et al., 1973). In the present study, Pb isotopic analyses have been made of a suite of metalliferous sediments (nontronite, Mn-oxide crust, Mn-Fe-oxide mud), pelagic sediments, and basalts from the Galapagos mounds area. The main purposes of the Pb study were to determine the source or sources of Pb in the metalliferous sediments, and whether or not stratigraphic variations exist in the isòtopic composition of Pb in the sediments.
Resumo:
Seventeen whole-rock samples, generally taken at 25- to 50-meter intervals from 5 to 560 meters sub-basement in Deep Sea Drilling Project Hole 504B, were analyzed for 87Sr/86Sr ratios, and rubidium and strontium concentrations. Ten of these samples also were analyzed for Pb-isotope composition. Strontium-isotope ratios for eight samples from the upper 260 meters of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the interval 330 to 560 meters, five samples have a restricted range of 0.70259 to 0.70279, with a mean of 0.70266, almost identical to the average value of fresh mid-ocean-ridge basalts. In the interval 260 to 330 meters, approximately intermediate strontium- isotope ratios are found. The higher 87Sr/86Sr ratios in the upper part of the hole can be interpreted in terms of strontium-isotope alteration during basalt-sea-water interaction. Relative to average fresh mid-ocean ridge basalts, the upper 260 meters of basalts are enriched by an average of about 9% in sea-water strontium 87Sr/86Sr = 0.7091). This Sr presumably is located in the smectites, which, as the main secondary minerals throughout the hole, replace olivine and matrix glass and locally fill vesicles (analyzed samples contained no veins). The strontium-isotope data strongly suggest that the integrated flux of sea water through the upper part of the Hole 504B crust has been greater than through the lower part. This is also suggested by (1) the common occurrence of Feoxide- hydroxide minerals as alteration products above 270 meters, but their near absence below 320 meters, (2) the presence of vein calcite above 320 meters, but its near absence below this level, and (3) the occurrence of vein pyrite only below a depth of 270 meters. Sea-water circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below 230 meters sub-basement. Although sufficient sea water was present within the lower part of the hole to produce smectitic alteration products, the overall water /rock ratio was low enough to prevent significant modification of strontium-isotope ratios. Lead-isotope ratios of Hole 504B basalts form approximately linear arrays in plots of 208Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb. The arrays are similar to those reported for basalts from other mid-ocean ridges. There is no trend in Hole 504B lead-isotope ratios with vertical position in the basement. The arrays indicate that the lead-isotope composition of the upper mantle from which the Hole 504B basaltic melts were derived was inhomogeneous.
Resumo:
Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at subsurface depths of about 2 to 20 meters; Mn-oxide material is limited to the upper 2 meters of the mounds. The nontronite forms intervals of up to a few meters' thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major element composition between nontronites from varying locations within the mounds, with adjacent granules from a given sample having very similar compositions; (2) individual granules show little internal variation in composition. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of Eh and composition during nontronite formation. Mn-oxide crusts have very low Fe contents, a feature characteristic of rapidly deposited Mn-oxide crusts formed under hydrothermal influences. The rare-earth element (REE) abundances of the nontronites are generally extremely low, totalling less than several ppm. Two samples have the negatively Ce anomaly typical of authigenic precipitates formed relatively rapidly from seawater. A Mn-oxide crust sample has low REE contents, typical of Mn-oxide crusts formed under hydrothermal influences, but no negative Ce anomaly. A sample of unusual Mn-Fe-oxide mud has relatively high REE concentrations and a seawater-type pattern; both of these features are also found for metalliferous sediments from the East Pacific Rise. The oxygen and hydrogen isotopic composition of the nontronites define a restricted field within a d18O-dD plot. In manganiferous sediments, d18O and dD appear to decrease with increase in the Mn-oxide content of the sediment. From the d18O values of the nontronites, formation temperatures in the range of about 20-30°C have been estimated. By comparison, temperatures of up to 11.5 °C at a 9-meter depth have been directly measured within the mounds (Corliss et al., 1979), and heat-flow data suggest present basement/sediment interface temperatures of 15-25°C. In a plot of Fe + Mn vs. d18O, the Mn-oxide crust and Mn-Fe-ooze plot near the tie-lines for authigenic Mn nodules and silicate phases, implying that they have formed in isotopic equilibrium with seawater at or close to bottom-water temperatures.
Resumo:
The main objective of this study was to investigate possible temporal trends of persistent organic pollutants (POPs) and mercury in eggs of herring gulls (Larus argentatus), black-legged kittiwakes (Rissa tridactyla), common guillemots (Uria aalge) and Atlantic puffins (Fratercula arctica) in Northern Norway. Eggs were collected in 1983, 1993 and 2003. Egg concentrations of POPs (PCB congeners IUPAC numbers: CB-28, 74, 66, 101, 99, 110, 149, 118, 153, 105, 141, 138, 187, 128, 156, 157, 180, 170, 194, 206, HCB, alph-HCH, beta-HCH, gamma-HCH, oxychlordane, trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT and p,p'-DDT) and mercury were quantified. Generally, POP levels decreased between 1983 and 2003 in all species. No significant temporal trend in mercury levels was found between 1983 and 2003.
Resumo:
DSDP Leg 92 drilled at four sites along an east-west transect at 19°S on the western flank of the East Pacific Rise (EPR), in an area where sediments are essentially a mixture of hydrothermal and biogenic components, with only a minimal contribution of clastic material. Rare-earth element (REE) data on the metalliferous (non-carbonate) fraction of samples ranging in age from ~2 to ~27 Ma indicate the existence of two distinct groups of patterns corresponding to two broad age groups, one <=8 Ma, the other >=10 Ma. Within each group, REE patterns have characteristics which are near-uniform, despite large variations in total REE abundances. Sediments of the younger group are enriched in light REE (LREE) relative to deep bottom waters influenced by the hydrothermal plume extending west from the EPR at 19°S. Sediments of the older groups show further relative LREE enrichment and/or heavy REE (HREE) depletion. Surficial sediments deposited beneath the lysocline have high Sum REE concentrations resulting from slow accumulation rates, and patterns resembling older sediments due to early diagenetic effects. A correlation between the mass accumulation rates (MAR) of Sum REE and Fe + Mn suggests that ferromanganese particulate matter supplied by the hydrothermal plume scavenges REE; during this process the LREE are preferentially removed from plume seawater. The MAR of Fe + Mn shows a general decrease with age above basement, whereas Sum REE concentrations in the metalliferous component increase with age above basement. This supports the Ruhlin and Owen model wherein limited scavenging of REE, due to rapid burial of sediment near the palaeo-axis, leads to low concentrations (but high MAR-values) for the REE. Following deposition and burial of the hydrothermal component, further relative flattening of the REE pattern takes place, probably the result of diagenetic reactions over several million years. Phase partitioning data indicate that the proportion of REE residing in more poorly crystalline phases tends to increase with age (from ~45% to 90% of Sum REE). This suggests that as initial ferromanganese precipitates undergo diagenetic recrystallization, REE are transferred to the poorly crystalline phases, and/or are scavenged from pore waters by these phases. Because of the various modifications to REE patterns apparently produced both in the water column and post-depositional settings, the REE patterns of metalliferous sediments will not reflect fine-scale REE variations in associated oceanic water masses.