970 resultados para BUTYL GROUPS
Resumo:
Direct numerical simulations of turbulent flow over regular arrays of urban-like, cubical obstacles are reported. Results are analysed in terms of a formal spatial averaging procedure to enable interpretation of the flow within the arrays as a canopy flow, and of the flow above as a rough wall boundary layer. Spatial averages of the mean velocity, turbulent stresses and pressure drag are computed. The statistics compare very well with data from wind-tunnel experiments. Within the arrays the time-averaged flow structure gives rise to significant 'dispersive stress' whereas above the Reynolds stress dominates. The mean flow structure and turbulence statistics depend significantly on the layout of the cubes. Unsteady effects are important, especially in the lower canopy layer where turbulent fluctuations dominate over the mean flow.
Resumo:
New Mo(II) diimine derivatives of [Mo(q (3)allyl)X(CO)(2)(CH3CN)(2)] (allyl = C3H5 and C5H5O; X = Cl, Br) were prepared, and [MO(eta(3)-C3H5)Cl(CO)(2)(BIAN)] (BIAN = 1,4-(4-chloro)phenyl-2,3-naphthalene-diazabutadiene) (7) was structurally characterized by single-crystal X-ray diffraction. This complex adopted an equatorial-axial arrangement of the bidentate ligand (axial isomer), in contrast with the precursors, found as the equatorial isomer in the solid and fluxional in solution. The new complexes of the type [Mo(eta(3)-allyl)X(CO)(2)(N-N)l (N-N is a bidentate chelating dinitrogen ligand) were tested for the catalytic epoxidation of cyclooctene using tert-butyl hydroperoxide as oxidant. All catalytic systems were 100% selective toward epoxide formation. While their turnover frequencies paralleled those of related Mo(eta) carbonyl compounds or Mo(VI) compounds bearing similar N-donor ligands, they exhibited similar olefin conversions in consecutive catalytic runs. The acetonitrile precursors were generally more active than the diimine complexes, and the chloro derivatives more active than the bromo ones. Combined vibrational and NMR spectroscopy and computational studies (DFT) were used to investigate the nature of the molybdenum species formed in the catalytic system with [Mo(eta(3)-C3H5)Cl(CO)(2){1,4-(2,6-dimethyl)phenyl-2.3-dimethyldiazabuta diene}] (4) and to propose that the resulting species may be dimeric bearing oxide bridges.
Resumo:
Conjugate addition of lithium dibenzylamide to tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate occurs with high levels of stereocontrol, with preferential addition of lithium dibenzylamide to the face of the cyclic alpha,beta-unsaturated acceptor anti- to the 3-methyl substituent. High levels of enantiorecognition are observed between tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate and an excess of lithium (+/-)-N-benzyl-N-alpha-methylbenzylamide (10 eq.) (E > 140) in their mutual kinetic resolution, while the kinetic resolution of tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate with lithium (S)-N-benzyl-N-alpha-methylbenzylamide proceeds to give, at 51% conversion, tert-butyl (1R, 2S, 3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-c arboxylate consistent with E > 130, and in 39% yield and 99 +/- 0.5% de after purification. Subsequent deprotection by hydrogenolysis and ester hydrolysis gives (1R, 2S, 3R)-3-methylcispentacin in > 98% de and 98 +/- 1% ee. Selective epimerisation of tert-butyl (1R, 2S, 3R, alphaS)-3-methyl-2-N- benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate by treatment with (KOBu)-Bu-t in (BuOH)-Bu-t gives tert-butyl (1S, 2S, 3R, alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carb oxylate in quantitative yield and in > 98% de, with subsequent deprotection by hydrogenolysis and ester hydrolysis giving (1S, 2S, 3R)-3-methyltranspentacin hydrochloride in > 98% de and 97 +/- 1% ee.
Resumo:
Metal organic chemical vapour deposition technique (MOCVD) has been used to immobilise Os species onto the internal porous structure of MCM-41. Evidence suggests that volatile Os-3(CO)(12) cluster reacts with surface silanol groups of the MCM-41 via an oxidative addition reaction to yield a trinuclear HOs3(CO)(10)(OSi-) surface species. After heat treatment in air or at their very low surface coverage, these triangular sites break up to partially oxidised mononuclear surface species. In the presence of tert-butyl hydroperoxide (TBHP) as an oxidant, we demonstrate that the mononuclear species form extremely active species that catalyse the oxidation of trans-stilbene selectively to the corresponding epoxide. By carefully controlling the parameters of the MOCVD method (loading and calcination temperature), we report a new class of optimised MCM-41 porous heterogeneous catalysts carrying isolated but active Os sites for the selective oxidation of trans-stilbene in liquid phase. The reaction selectivity of the solid supported Os is apparently higher than the soluble homogeneous Os-3(CO)(12) cluster. It is envisaged that our solid supported catalysts not only facilitate separation from products but also offer an excellent utilisation of Os for catalysis. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A series of eight synthetic self-assembling terminally blocked tripeptides have been studied for gelation. Some of them form gels in various aromatic solvents including benzene, toluene, xylene, and chlorobenzene. It has been found that the protecting groups play an important role in the formation of organogels. It has been observed that, if the C-terminal has been changed from methyl ester to ethyl ester the gelation property does not change significantly (keeping the N-terminal protecting group same), while the change of the protecting group from ethyl ester to isopropyl ester completely abolishes the gelation property. Similarly, keeping the identical C-terminal protecting group (methyl ester) the results of the gelation study indicate that the substitution of N-terminal protection Boc-(tert-butyloxycarbonyl) to Cbz-(benzyloxycarbonyl) does change the gelation property insignificantly, while the change from Boc- to pivaloyl (Piv-) or acetyl (Ac-) group completely eliminates the gelation property. Morphological studies of the dried gels of two of the peptides indicate the presence of an entangled nano-fibrillar network that might be responsible for gelation. FTIR studies of the gels demonstrate that an intermolecular hydrogen bonding network is formed during gelation. Results of X-ray powder diffraction studies for these gelator peptides in different states (dried gels, gel, and bulk solids) reflected that the structure in the wet gel is distinctly different from the dried gel and solid state structures. Single crystal X-ray diffraction studies of a non-gelator peptide, which is structurally similar to the gelator molecules reveal that the peptide forms an antiparallel beta-sheet structure in crystals. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
New tri-functional ligands of the type R2NCCCH2SCH2CCNR2 (where R = iso-propyl, n-butyl or iso-butyl) were prepared and characterized. The coordination chemistry of these ligands with uranyl and lanthanum(III) nitrates was studied by using the IR, (HNMR)-H-1 and elemental analysis methods. Structures for the compounds [UO2(NO3)(2)((Pr2NCOCH2SCH2CONPr2)-Pr-i-Pr-i)] [UO2(NO3)(2)((Bu2NCOCH2SCH2CONBu2)-Bu-i-Bu-i)(2)] [La(NO3)(3)((Pr2NCOCH2SCH2CONPr2)-Pr-i-Pr-i)(2)] and [La(NO3)(3)((Bu2NCOCH2SCH2CONBu2)-Bu-i-Bu-i)(2)] were determined by single crystal X-ray diffraction. These structures show that the ligand acts as a bidentate chelating ligand and bonds through both the carbamoyl groups to the uranyl and lanthanum(III) nitrate groups. Solvent extraction studies show that the ligand can extract the uranyl ion from the nitric acid medium but does not show any ability to extract the americium (III) ion. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The development of two novel protecting groups for amines is described. Thus, a range of amines have been converted to ureas, and the deprotection of these upon exposure to mushroom tyrosinase (E.C. 1.14.18.1) has been demonstrated.
Resumo:
Reactions of [Mo(eta(3)-C3H5)Br(CO)(2)(NCMe)(2)] with the bidentate nitrogen ligands 2-(2'-pyridyl)imidazole (L1), 2-(2'-pyridyl)benzimidazole (L2), N,N'-bis(2'-pyridinecarboxamido)-1,2-ethane (L3), and 2,2'-bisimidazole (L4) led to the new complexes [Mo(eta(3)-C3H5)Br(CO)(2)(L)] (L = L1, 1; L2, 2; L4, 4) and [{Mo(eta(3)-C3H5) Br(CO)(2)}(2)(mu-L-3)] (3). The reaction of complexes 2 and 3 with Tl[CF3SO3] afforded [Mo(eta(3)-C3H5)(CF3SO3)(CO)(2)(L2)] (2T) and [{Mo(eta(3)-C3H5)(CF3SO3)(CO)(2)}(2)(mu-L-3)] (3T). Complexes 3 and 2T were structurally characterized by single crystal X-ray diffraction, showing the facial allyl/carbonyls arrangement and the formation of the axial isomer. In 2T, two molecules are assembled in a hydrogen bond dimer. The four complexes 1-4 were tested as precursors in the catalytic epoxidation of cyclooctene and styrene, in the presence of t-butylhydroperoxide (TBHP), with moderate conversions and turnover frequencies for complexes 1-3 and very low ones for 4. The increasing number of N-H groups in the complexes seems to be responsible for the loss of catalytic activity, compared with other related systems. The cytotoxic activities of all the complexes were evaluated against HeLa cells. The results showed that compounds 1,2,4, and 2T exhibited significant activity, complexes 2 and 2T being particularly promising. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present paper details the synthesis, characterization, and preliminary physical analyses of a series of polyisobutylene derivatives featuring urethane and urea end-groups that enable supramolecular network formation to occur via hydrogen bonding. These polymers are readily accessible from relatively inexpensive and commercially available starting materials using a simple two-step synthetic approach. In the bulk, these supramolecular networks were found to possess thermoreversible and elastomeric characteristics as determined by temperature-dependent rheological analysis. These thermoreversible and elastomeric properties make these supramolecular materials potentially very useful in applications such as adhesives and healable surface coatings.
Resumo:
Aromatic poly(ether-ketone)s having pendant carboxyl groups have been obtained by direct, one-pot, Friedel-Crafts copolycondensation of 4,4'-diphenoxybenzophenone with a mixture of terephthaloyl chloride (TC) and trimellitic anhydride acid chloride (TAAC), over a wide range of TAAC/TC molar ratios, in the presence of anhydrous aluminum chloride. The syntheses were performed as precipitation-polycondensations, and the polymers were obtained in particulate form. Besides globular particles of polymer, small quantities of elongated, needlelike particles were observed when the mole ratio TAAC/TC was less than 1. Use of X-ray microdiffraction with synchrotron radiation has revealed that the needlelike material consists of a cyclic compound containing 10 phenylene units, i.e., the crystals are of a [2 + 2] macrocyclic dimer. The polymers obtained are soluble in strong acids and in mixtures of methanesulfonic acid or trifluoroacetic acid with chlorinated hydrocarbons. The molecular structures of the polymers were confirmed by H-1 and C-13 NMR spectroscopy. Reaction of TAAC with 4,4'-diphenoxybenzophenone produced mainly meta-orientation of the resulting ketone linkages. The size of the polymer particles, their molecular weights, and the melting behavior of the products obtained depend on the TAAC/TC ratio used. Ortho-keto acid residues, formed during reaction of anhydride groups of TAAC with 4,4'-diphenoxybenzophenone, exhibit ring-chain tautomerism. A carboxyl-containing aromatic polyketone derived from p-terphenyl, and thus having with no ether linkages in the main chain, was prepared by analogous chemistry, and functional derivatives of carboxy-substituted polyketones were also obtained and characterized.
Resumo:
The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log(10) cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log(10) cycles of E. coli at pH 7.0 and almost 3 log(10) cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes.
Resumo:
The prevalence of the metabolic syndrome (MetS), CVD and type 2 diabetes (T2D) is known to be higher in populations from the Indian subcontinent compared with the general UK population. While identification of this increased risk is crucial to allow for effective treatment, there is controversy over the applicability of diagnostic criteria, and particularly measures of adiposity in ethnic minorities. Diagnostic cut-offs for BMI and waist circumference have been largely derived from predominantly white Caucasian populations and, therefore, have been inappropriate and not transferable to Asian groups. Many Asian populations, particularly South Asians, have a higher total and central adiposity for a similar body weight compared with matched Caucasians and greater CVD risk associated with a lower BMI. Although the causes of CVD and T2D are multi-factorial, diet is thought to make a substantial contribution to the development of these diseases. Low dietary intakes and tissue levels of long-chain (LC) n-3 PUFA in South Asian populations have been linked to high-risk abnormalities in the MetS. Conversely, increasing the dietary intake of LC n-3 PUFA in South Asians has proved an effective strategy for correcting such abnormalities as dyslipidaemia in the MetS. Appropriate diagnostic criteria that include a modified definition of adiposity must be in place to facilitate the early detection and thus targeted treatment of increased risk in ethnic minorities.