992 resultados para BOUNDARY-LAYER


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. ©2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Significant progress has been made towards understanding the global stability of slowly-developing shear flows. The WKBJ theory developed by Patrick Huerre and his co-authors has proved absolutely central, with the result that both the linear and the nonlinear stability of a wide range of flows can now be understood in terms of their local absolute/convective instability properties. In many situations, the local absolute frequency possesses a single dominant saddle point in complex X-space (where X is the slow streamwise coordinate of the base flow), which then acts as a single wavemaker driving the entire global linear dynamics. In this paper we consider the more complicated case in which multiple saddles may act as the wavemaker for different values of some control parameter. We derive a frequency selection criterion in the general case, which is then validated against numerical results for the linearized third-order Ginzburg-Landau equation (which possesses two saddle points). We believe that this theory may be relevant to a number of flows, including the boundary layer on a rotating disk and the eccentric Taylor-Couette-Poiseuille flow. © 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2014 Cambridge University Press. This paper describes a detailed experimental study using hot-wire anemometry of the laminar-turbulent transition region of a rotating-disk boundary-layer flow without any imposed excitation of the boundary layer. The measured data are separated into stationary and unsteady disturbance fields in order to elaborate on the roles that the stationary and the travelling modes have in the transition process. We show the onset of nonlinearity consistently at Reynolds numbers, R, of ∼ 510, i.e. at the onset of Lingwood's (J. Fluid Mech., vol. 299, 1995, pp. 17-33) local absolute instability, and the growth of stationary vortices saturates at a Reynolds number of ∼ 550. The nonlinear saturation and subsequent turbulent breakdown of individual stationary vortices independently of their amplitudes, which vary azimuthally, seem to be determined by well-defined Reynolds numbers. We identify unstable travelling disturbances in our power spectra, which continue to grow, saturating at around R=585, whereupon turbulent breakdown of the boundary layer ensues. The nonlinear saturation amplitude of the total disturbance field is approximately constant for all considered cases, i.e. different rotation rates and edge Reynolds numbers. We also identify a travelling secondary instability. Our results suggest that it is the travelling disturbances that are fundamentally important to the transition to turbulence for a clean disk, rather than the stationary vortices. Here, the results appear to show a primary nonlinear steep-fronted (travelling) global mode at the boundary between the local convectively and absolutely unstable regions, which develops nonlinearly interacting with the stationary vortices and which saturates and is unstable to a secondary instability. This leads to a rapid transition to turbulence outward of the primary front from approximately R=565 to 590 and to a fully turbulent boundary layer above 650.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lateral epitaxial overgrowth of GaN was carried out by low-pressure metalorganic chemical vapor deposition, and the cross section shape of the stripes was characterized by scanning electron microscopy. Inclined {11-2n} facets (n approximate to 1-2.5) were observed in the initial growth, and they changed gradually into the vertical {11-20} sidewalls in accordance with the process of the lateral overgrowth. A model was proposed utilizing diffusion equations and boundary conditions to simulate the concentration of the Ga species constituent throughout the concentration boundary layer. Solutions to these equations are found using the two-dimensional, finite element method. We suggest that the observed evolution of sidewall facets results from the variation of the local V/III ratio during the process of lateral overgrowth induced by the lateral supply of the Ga species from the SiNx mask regions to the growing GaN regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The annealing behavior of the hexagonal phase content in cubic GaN (c-GaN) thin films grown on GaAs (001) by MOCVD is reported. C-GaN thin films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition (MOCVD). High temperature annealing is employed to treat the as-grown c-GaN thin films. The characterization of the c-GaN films is investigated by photoluminescence (PL) and Raman scattering spectroscopy. The change conditions of the hexagonal phase content in the metastable c-GaN are reported. There is a boundary layer existing in the c-GaN/GaAs film. When being annealed at high temperature, the intensity of the TOB and LOB phonon modes from the boundary layer weakens while that of the E-2 phonon mode from the hexagonal phase increases. The content change of hexagonal phase has closer relationship with annealing temperature than with annealing time period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The steady two-dimensional Navier-Stokes equations with the slip wall boundary conditions were used to simulate the supersonic flow in micro convergent-divergent nozzles. It is observed that shock waves can take place inside or outside of the micronozzles under the earth environment. For the over-expanded flows, there is a boundary layer separation point, downstream of which a wave interface separates the viscous boundary layer with back air flow and the inviscid core flow. The oblique shock wave is followed by the bow shock and shock diamond. The viscous boundary layer thickness relative to the whole nozzle width on the exit plane is increased but attains the maximum value around of 0.5 and oscillates against this value with the continuous increasing of the nozzle upstream pressures. The viscous effect either changes the normal shock waves outside of the nozzle for the inviscid flow to the oblique shock waves inside the nozzle, or transfers the expansion jet flow without shock waves for the inviscid flow to the oblique shock waves outside of the nozzle. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Supercritical kerosene of approximately 760 K was prepared and injected in the overall equivalence ratio range of 0.5-1.46. Two pairs of integrated injector/flameholder cavity modules in tandem were used to facilitate fuel-air mixing and stable combustion. For single-stage fuel injection at an upstream location, it was found that the boundary layer separation could propagate into the isolator with increasing fuel equivalence ratio due to excessive local heat release, which in turns changed the entry airflow conditions. Moving the fuel injection to a further downstream location could alleviate the problem, while it would result in a decrease in combustion efficiency due to shorter fuel residence time. With two-stage fuel injections the overall combustor performance was shown to be improved and kerosene injections at fuel rich conditions could be reached without the upstream propagation of the boundary layer separation into the isolator. Furthermore, effects of the entry Mach number and pilot hydrogen on combustion performance were also studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

对MHD(mechanisms of magnetohy drodynamics)控制超声速平板湍流边界层的机理进行了理论研究和数值模拟.理论上,采用等离子体低频近似碰撞频率模型,建立等离子体中电子和离子的力平衡方程,得到等离子体速度、极化电场以及边界层速度.数值上,通过空间HLLE格式、LU-SGS时间推进求解时均磁流体动力学湍流方程,其中湍流模型采用sst-kω双方程模型.研究结果表明:(1)边界层速度的理论结果和数值结果误差在7%范围内;(2)只有磁场而电场为零时,洛仑兹力起到减小摩阻的作用.施加电场后,洛仑兹力能够加速边界层低速区流体;(3)在边界层外层,越靠近壁面,作用参数越小;而在边界层近壁区黏性底层,虽然惯性力减小,但黏性力却迅速增加,因此越靠近壁面,作用参数反而越大,加速低速流的代价增加.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为了研究磁流体动力学(Magnetohydrodynamics:MHD)加速边界层对激波-湍流边界层相互作用的影响,用高阶有限差分法求解了小磁雷诺数近似的MHD湍流方程.其中,无粘通量采用WENN格式离散、粘性通量采用Roe平均中心差分离散,时间采用半隐式推进,并采取追赶法求解.计算给出了湍流、电场、磁场和电导率等参数对边界层分离的影响,数值结果显示:在同样的逆压梯度下,湍流边界层分离能更快地趋于稳态流场,且分离区比层流小;通过施加洛仑兹力加速,边界层速度型面变得更加饱满、位移厚度减小、分离点和再附点向激波与固壁的交点靠近,分离区尺寸减小甚至最终被消除.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant-Madsen bottom boundary layer model driven by the monthly sediment load of the Yellow River, were conducted to separately diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the Yellow River in the Bohai Sea. Both transport and spatio-temporal distribution of suspended sediment concentration in the Bohai Sea were numerially simulated. It could be concluded that suspended sediment discharged from the Yellow River cannot be delivered in long distance under the condition of tidal current. Almost all of sediments from the Yellow River are deposited outside the delta under the condition of wind-driven current, and only very small of them are transported faraway. On the basis of wind forcing, sediments from the Yellow River are mainly transported north-northwestward, and others which are first delivered to the Laizhou Bay are continuously moved northward. An obvious 3D structure characteristic of sediment transport is produced in the wind-driven and tide-induced residual circulation condition. Transport patterns at all layers are generally consistent with circulation structure, but there is apparent deviation between the depth-averaged sediment flux and the circulation structure. The phase of temporal variation of sediment concentration is consistent with that of the bottom shear stress, both of which are proved to have a ten-day cycle in wave and current condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42,134-149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313-351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313-351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971-5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two deep-sea moorings were deployed respectively in the east area and the west area of Chinese Pioneer Area (CPA) in the tropic east Pacific to monitor the regional deep-sea dynamics below 600 meters above bottom (mab) from July 1997 to Oct. 1999. Results of statistics, spectral estimate and correlation analysis of the low-passed velocity data show that time scales of low-frequency components of the near-bottom currents are 25similar to120 days, in which 51-day period dominates the lower band of the frequency domain. Topographic features have obvious effect on low-frequency currents below 50 mab; modulations of the bottom-intensified sheared mean flow to the low-frequency currents are the dynamic mechanism of the frequency shift that occurs in both the east-area and the west-area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A hydrodynamic-thermodynamic equation set was set up to reflect the formational mechanism and evolution of the Northern Yellow (Huanghai) Sea cold water mass (NYSCWM) and its density circulation. Appropriate mathematical physical models were established by using some physical postulations. An approximate analytic solution to expound the distributions of temperature and three-dimensional current velocity, which can be used to expound the formational mechanism of the NYSCWM and its density circulation is obtained by using the theory of boundary layer and perturbational analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comprehensive field study has been undertaken to investigate sediment resuspension dynamics in the Moreton Bay, a large semi-enclosed bay situated in South East Queensland, Australia. An instrumented tripod, which housed three current meters, three OBS sensors and one underwater video camera, was used to collect the field data on tides, currents, waves and suspended sediment concentrations at four sites (Sites 1, 2, 4, and 5) in the bay. Site I was located at the main entrance, Site 2 at the central bay in deep water, and Sites 4 and 5 at two small bays in shallow water. The bed sediment was fine sand (d(50) = 0. 2 mm) at Site 1, and cohesive sediment at the other three sites. Based on the collected field data, it is found that the dominant driving forces for sediment resuspension are a combination of ocean swell and tidal currents at Site 1, tidal currents at Site 2, and wind-waves at Sites 4 and 5. The critical bed shear stress for cohesive sediment resuspension is determined as 0. 079 Pa in unidirectional flow at Site 2, and 0. 076 Pa in wave-induced oscillatory flow at Site 5.