985 resultados para BONE-RESORPTION
Resumo:
Plasma cells represent the end stage of B-cell development and play a key role in providing an efficient antibody response, but they are also involved in numerous pathologies. Here we show that CD93, a receptor expressed during early B-cell development, is reinduced during plasma-cell differentiation. High CD93/CD138 expression was restricted to antibody-secreting cells both in T-dependent and T-independent responses as naive, memory, and germinal-center B cells remained CD93-negative. CD93 was expressed on (pre)plasmablasts/plasma cells, including long-lived plasma cells that showed decreased cell cycle activity, high levels of isotype-switched Ig secretion, and modification of the transcriptional network. T-independent and T-dependent stimuli led to re-expression of CD93 via 2 pathways, either before or after CD138 or Blimp-1 expression. Strikingly, while humoral immune responses initially proceeded normally, CD93-deficient mice were unable to maintain antibody secretion and bone-marrow plasma-cell numbers, demonstrating that CD93 is important for the maintenance of plasma cells in bone marrow niches.
Resumo:
? Introduction ? Bone fracture healing and healing problems ? Biomaterial scaffolds and tissue engineering in bone formation - Bone tissue engineering - Biomaterial scaffolds - Synthetic scaffolds - Micro- and nanostructural properties of scaffolds - Conclusion ? Mesenchymal stem cells and osteogenesis - Bone tissue - Origin of osteoblasts - Isolation and characterization of bone marrow derived MSC - In vitro differentiation of MSC into osteoblast lineage cells - In vivo differentiation of MSC into bone - Factors and pathways controlling osteoblast differentiation of hMSC - Defining the relationship between osteoblast and adipocyte differentiation from MSC - MSC and sex hormones - Effect of aging on osteoblastogenesis - Conclusion ? Embryonic, foetal and adult stem cells in osteogenesis - Cell-based therapies for bone - Specific features of bone cells needed to be advantageous for clinical use - Development of therapeutic biological agents - Clinical application concerns - Conclusion ? Platelet-rich plasma (PRP), growth factors and osteogenesis - PRP effects in vitro on the cells involved in bone repair - PRP effects on osteoblasts - PRP effects on osteoclasts - PRP effects on endothelial cells - PRP effects in vivo on experimental animals - The clinical use of PRP for bone repair - Non-union - Distraction osteogenesis - Spinal fusion - Foot and ankle surgery - Total knee arthroplasty - Odontostomatology and maxillofacial surgery - Conclusion ? Molecular control of osteogenesis - TGF-β signalling - FGF signalling - IGF signalling - PDGF signalling - MAPK signalling pathway - Wnt signalling pathway - Hedgehog signalling - Notch signalling - Ephrin signalling - Transcription factors regulating osteoblast differentiation - Conclusion ? Summary This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.
Resumo:
Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by "intermediate osteopetrosis", which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions.
Resumo:
BACKGROUND: Renal calcium stones and hypercalciuria are associated with a reduced bone mineral density (BMD). Therefore, the effect of changes in calcium homeostasis is of interest for both stones and bones. We hypothesized that the response of calciuria, parathyroid hormone (PTH) and 1.25 vitamin D to changes in dietary calcium might be related to BMD. METHODS: A single-centre prospective interventional study of 94 hyper- and non-hypercalciuric calcium stone formers consecutively retrieved from our stone clinic. The patients were investigated on a free-choice diet, a low-calcium diet, while fasting and after an oral calcium load. Patient groups were defined according to lumbar BMD (z-score) obtained by dual X-ray absorptiometry (group 1: z-score <-0.5, n = 30; group 2: z-score -0.5-0.5, n = 36; group 3: z-score >0.5, n = 28). The effect of the dietary interventions on calciuria, 1.25 vitamin D and PTH in relation to BMD was measured. RESULTS: An inverse relationship between BMD and calciuria was observed on all four calcium intakes (P = 0.009). On a free-choice diet, 1.25 vitamin D and PTH levels were identical in the three patient groups. However, the relative responses of 1.25 vitamin D and PTH to the low-calcium diet were opposite in the three groups with the highest increase of 1.25 vitamin D in group 1 and the lowest in group 3, whereas PTH increase was most pronounced in group 3 and least in group 1. CONCLUSION: Calcium stone formers with a low lumbar BMD exhibit a blunted response of PTH release and an apparently overshooting production of 1.25 vitamin D following a low-calcium diet.
Resumo:
The trabecular bone score (TBS) is an index of bone microarchitectural texture calculated from anteroposterior dual-energy X-ray absorptiometry (DXA) scans of the lumbar spine (LS) that predicts fracture risk, independent of bone mineral density (BMD). The aim of this study was to compare the effects of yearly intravenous zoledronate (ZOL) versus placebo (PLB) on LS BMD and TBS in postmenopausal women with osteoporosis. Changes in TBS were assessed in the subset of 107 patients recruited at the Department of Osteoporosis of the University Hospital of Berne, Switzerland, who were included in the HORIZON trial. All subjects received adequate calcium and vitamin D3. In these patients randomly assigned to either ZOL (n = 54) or PLB (n = 53) for 3 years, BMD was measured by DXA and TBS assessed by TBS iNsight (v1.9) at baseline and 6, 12, 24, and 36 months after treatment initiation. Baseline characteristics (mean ± SD) were similar between groups in terms of age, 76.8 ± 5.0 years; body mass index (BMI), 24.5 ± 3.6 kg/m(2) ; TBS, 1.178 ± 0.1 but for LS T-score (ZOL-2.9 ± 1.5 versus PLB-2.1 ± 1.5). Changes in LS BMD were significantly greater with ZOL than with PLB at all time points (p < 0.0001 for all), reaching +9.58% versus +1.38% at month 36. Change in TBS was significantly greater with ZOL than with PLB as of month 24, reaching +1.41 versus-0.49% at month 36; p = 0.031, respectively. LS BMD and TBS were weakly correlated (r = 0.20) and there were no correlations between changes in BMD and TBS from baseline at any visit. In postmenopausal women with osteoporosis, once-yearly intravenous ZOL therapy significantly increased LS BMD relative to PLB over 3 years and TBS as of 2 years. © 2013 American Society for Bone and Mineral Research.
Resumo:
Normal rats were injected intravenously with 131I- and 125I-labeled intact murine and chimeric mouse-human monoclonal antibodies directed against carcinoembryonic antigen or with the corresponding F(ab')2 fragments. At different times after injection, individual animals were killed and radioactivity of blood and major organs, including bones and bone marrow, was determined. Ratios comparing radioactivity concentration in different tissues with that of bone marrow were calculated and found to remain stable during several effective half-lives of the antibodies. Mean bone marrow radioactivity was 35% (range, 29%-40%) of that of blood and 126% (range, 108%-147%) of that of liver after injection of intact Mabs or F(ab')2 fragments. In nude rats bearing human colon carcinoma xenografts producing carcinoembryonic antigen, relative bone marrow radioactivity was slightly lower than that in normal rats.
Resumo:
PURPOSE: To evaluate the cause of recurrent pathologic instability after anterior cruciate ligament (ACL) surgery and the effectiveness of revision reconstruction using a quadriceps tendon autograft using a 2-incision technique. TYPE OF STUDY: Retrospective follow-up study. METHODS: Between 1999 and 2001, 31 patients underwent ACL revision reconstruction because of recurrent pathologic instability during sports or daily activities. Twenty-eight patients were reviewed after a mean follow-up of 4.2 years (range, 3.3 to 5.6 years). The mean age at revision surgery was 27 years (range, 18 to 41 years). The average time from primary procedure to revision surgery was 26 months (range, 9 to 45 months). A clinical, functional, and radiographic evaluation was performed. Also magnetic resonance imaging (MRI) or computed tomography (CT) scanning was performed. The International Knee Documentation Committee (IKDC), Lysholm, and Tegner scales were used. A KT-1000 arthrometer measurement (MEDmetric, San Diego, CA) by an experienced physician was made. RESULTS: Of the failures, 79% had radiographic evidence of malposition of their tunnels. In only 6 cases (21%) was the radiologic anatomy of tunnel placement judged to be correct on both the femoral and tibial side. The MRI or CT showed, in 6 cases, a too-centrally placed femoral tunnel. After revision surgery, the position of tunnels was corrected. A significant improvement of Lachman and pivot-shift phenomenon was observed. In particular, 17 patients had a negative Lachman test, and 11 patients had a grade I Lachman with a firm end point. Preoperatively, the pivot-shift test was positive in all cases, and at last follow-up in 7 patients (25%) a grade 1+ was found. Postoperatively, KT-1000 testing showed a mean manual maximum translation of 8.6 mm (SD, 2.34) for the affected knee; 97% of patients had a maximum manual side-to-side translation <5 mm. At the final postoperative evaluation, 26 patients (93%) graded their knees as normal or nearly normal according to the IKDC score. The mean Lysholm score was 93.6 (SD, 8.77) and the mean Tegner activity score was 6.1 (SD, 1.37). No patient required further revision. Five patients (18%) complained of hypersensitive scars from the reconstructive surgery that made kneeling difficult. CONCLUSIONS: There were satisfactory results after ACL revision surgery using quadriceps tendon and a 2-incision technique at a minimum 3 years' follow-up; 93% of patients returned to sports activities. LEVEL OF EVIDENCE: Level IV, case series, no control group.
Resumo:
Natural killer T (NKT) cells express a T cell receptor (TCR) and markers common to NK cells, including NK1.1. In vivo, NKT cells are triggered by anti-CD3epsilon MAb to rapidly produce large amounts of IL-4 and by IL-12 to reject tumors. We show here that anti-CD3epsilon MAb treatment rapidly depletes the liver (and partially the spleen) of NKT cells and that homeostasis is achieved 1 to 2 days later via NKT cell proliferation that occurs mainly in bone marrow. Similar results were obtained in mice treated with IL-12. Collectively, our data demonstrate that peripheral NKT cells are highly sensitive to activation-induced cell death and that bone marrow plays a major role in restoring NKT cell homeostasis.