999 resultados para BONE BIO-OSS
Resumo:
Introduction: Experimental studies have suggested that indoxyl sulfate (IS), a protein-bound uremic toxin, may be involved in the development of renal osteodystrophy. Objective: evaluate the association between IS levels and biochemical parameters related to mineral metabolism and bone histomorphometry in a cohort of pre-dialysis chronic kidney disease (CKD) patients. Methods: This is a post-hoc analysis of an observational study evaluating the association between coronary calcification and bone biopsy findings in 49 patients (age: 52 ± 10 years; 67% male; estimated glomerular filtration rate: 36 ± 17 ml/min). Serum levels of IS were measured. Results: Patients at CKD stages 2 and 3 presented remarkably low bone formation rate. Patients at CKD stages 4 and 5 presented significantly higher osteoid volume, osteoblast and osteoclast surface, bone fibrosis volume and bone formation rate and a lower mineralization lag time than CKD stage 2 and 3 patients. We observed a positive association between IS levels on one hand and the bone formation rate, osteoid volume, osteoblast surface and bone fibrosis volume on the other. Multivariate regression models confirmed that the associations between IS levels and osteoblast surface and bone fibrosis volume were both independent of demographic and biochemical characteristics of the study population. A similar trend was observed for the bone formation rate. Conclusion: Our findings demonstrated that IS is positively associated with bone formation rate in pre-dialysis CKD patients.
Resumo:
Rare-earth based upconverting nanoparticles (UCNPs) have attracted much attention due to their unique luminescent properties. The ability to convert multiple photons of lower energy to ones with higher energy through an upconversion (UC) process offers a wide range of applications for UCNPs. The emission intensities and wavelengths of UCNPs are important performance characteristics, which determine the appropriate applications. However, insufficient intensities still limit the use of UCNPs; especially the efficient emission of blue and ultraviolet (UV) light via upconversion remains challenging, as these events require three or more near-infrared (NIR) photons. The aim of the study was to enhance the blue and UV upconversion emission intensities of Tm3+ doped NaYF4 nanoparticles and to demonstrate their utility in in vitro diagnostics. As the distance between the sensitizer and the activator significantly affect the energy transfer efficiency, different strategies were explored to change the local symmetry around the doped lanthanides. One important strategy is the intentional co-doping of active (participate in energy transfer) or passive (do not participate in energy transfer) impurities into the host matrix. The roles of doped passive impurities (K+ and Sc3+) in enhancing the blue and UV upconversions, as well as in influencing the intense UV upconversion emission through excess sensitization (active impurity) were studied. Additionally, the effects of both active and passive impurity doping on the morphological and optical performance of UCNPs were investigated. The applicability of UV emitting UCNPs as an internal light source for glucose sensing in a dry chemistry test strip was demonstrated. The measurements were in agreement with the traditional method based on reflectance measurements using an external UV light source. The use of UCNPs in the glucose test strip offers an alternative detection method with advantages such as control signals for minimizing errors and high penetration of the NIR excitation through the blood sample, which gives more freedom for designing the optical setup. In bioimaging, the excitation of the UCNPs in the transparent IR region of the tissue permits measurements, which are free of background fluorescence and have a high signal-to-background ratio. In addition, the narrow emission bandwidth of the UCNPs enables multiplexed detections. An array-in-well immunoassay was developed using two different UC emission colours. The differentiation between different viral infections and the classification of antibody responses were achieved based on both the position and colour of the signal. The study demonstrates the potential of spectral and spatial multiplexing in the imaging based array-in-well assays.
Resumo:
Diabetes mellitus is a common chronic metabolic disease worldwide whose prevalence has increased during the last decades. Besides its more commonly recognized complications, such as macrovascular disease, retinopathy, nephropathy and neuropathy, diabetes related bone disease has gained growing attention. Diabetic patients are more prone to fracture than the general population as well as to low turnover bone disease in the chronic kidney disease setting. In this review, we discuss the relationship between diabetes and bone as well as the pathogenesis of bone fragility in T2D.
Resumo:
In this doctoral thesis, a tomographic STED microscopy technique for 3D super-resolution imaging was developed and utilized to observebone remodeling processes. To improve upon existing methods, wehave used a tomographic approach using a commercially available stimulated emission depletion (STED) microscope. A certain region of interest (ROI) was observed at two oblique angles: one at a standard inverted configuration from below (bottom view) and another from the side (side view) via a micro-mirror positioned close to the ROI. The two viewing angles were reconstructed into a final tomogram. The technique, named as tomographic STED microscopy, was able to achieve an axial resolution of approximately 70 nm on microtubule structures in a fixed biological specimen. High resolution imaging of osteoclasts (OCs) that are actively resorbing bone was achieved by creating an optically transparent coating on a microscope coverglass that imitates a fractured bone surface. 2D super-resolution STED microscopy on the bone layer showed approximately 60 nm of lateral resolution on a resorption associated organelle allowing these structures to be imaged with super-resolution microscopy for the first time. The developed tomographic STED microscopy technique was further applied to study resorption mechanisms of OCs cultured on the bone coating. The technique revealed actin cytoskeleton with specific structures, comet-tails, some of which were facing upwards and some others were facing downwards. This, in our opinion, indicated that during bone resorption, an involvement of the actin cytoskeleton in vesicular exocytosis and endocytosis is present. The application of tomographic STED microscopy in bone biology demonstrated that 3D super-resolution techniques can provide new insights into biological 3D nano-structures that are beyond the diffraction-limit when the optical constraints of super-resolution imaging are carefully taken into account.
Resumo:
Nimeke tekstin alusta.
Resumo:
Arkit: A-B8. - S. [16] tyhjä.
Resumo:
Coal slurry was of vital interest during the last century due to its potential as an alternative fuel where liquid fuels were necessary. Recently, environmental impacts of the traditional fuels, similarities of bio-coal to that of coal, and huge bio-coal supply has attracted the attention to prepare bio-coal slurries as a new fuel. Rudolf Diesel who invented the diesel engine on 1895 was of the opinion that diesel engines are capable to use different kinds of fuels due to the special design. He tried some kind of vegetable oil to operate on his IC engine. Recently, due to high energy density and more environmentally friendly fuel, researchers believe that bio-coal slurries could act as a new alternative fuel in large diesel engines. Loads of research on different kinds of bio-coal slurry were done by the other researchers worldwide and a lot of progress to boost slurry’s quality were achieved recently. The present study aims to achieve the ideal condition of different factors affecting on the quality of bio-coal slurry. One charcoal sample and two kinds of torrefied wood were used to investigate and compare the reaction of various factors. The results show a great gap between the quality of slurries made of different samples and more researches are necessary to fully understand the impact of the different parameter and improving the quality.
Resumo:
The purpose of this Master’s thesis is to study value co-creation in emerging value network. The main objective is to examine how value is co-created in bio-based chemicals value network. The study provides insights to different actors’ perceived value in the value network and enlightens their motivations to commit to the collaborative partnerships with other actors. Empirical study shows that value co-creation is creation of mutual value for both parties of the relationship by combining their non-competing resources to achieve a common goal. Value co-creation happens in interactions, and trust, commitment and information sharing are essential prerequisites for value co-creation. Value co-creation is not only common value creation, but it is also value that emerges for each actor because of the co-operation with the other actor. Even though the case companies define value mainly in economic terms, the other value elements like value of the partnership, knowledge transfer and innovation are more important for value co-creation.
Resumo:
ABSTRACT Background: Previous studies have implied that weight-bearing, intense and prolonged physical activities optimize bone accretion during the grow^ing years. The majority of past inquiries have used dual-energy X-ray absorptiometry (DXA) to examine bone strength and hand-wrist radiography to determine skeletal maturity in children. Recently, quantitative ultrasound (QUS) technologies have been developed to examine bone properties and skeletal maturity in a safe, noninvasive and cost-effective manner. Objective: The purpose of this study was to compare bone properties and skeletal maturity in competitive male child and adolescent athletes with minimallyactive, age-matched controls, using QUS technology. >. Methods: In total, 224 males were included in the study. The 115 pre-pubertal boys aged 10-12 years consisted of control, minimally-active children (n=34), soccer players (n=26), gymnasts (n=25) and hockey players (n=30). In addition, the 109 late-pubertal boys aged 14-16 years consisted of control, minimally-active adolescents (n=31), soccer players (n=30), gymnasts (n=17) and hockey players (n=31). The athletic groups were elite level players that predominantly trained year-round. Physical activity, nutrition and sports participation were assessed with various questionnaires. Anthropometries, such as height, weight and relative body fat percentage (BF%) were assessed using standard measures. Skeletal strength and age were evaluated using bone QUS. Lastly, salivary testosterone (sT) concentration was measured using Radioimmunoassay (RIA). Results: Within each age group, there were no significant differences between the activity groups in age and pubertal stage. An age effect was apparent in all variables, as expected. A sport effect was noted in all physical characteristics: the child and adolescent gymnasts were shorter and lighter than other sports groups. Adiposity was greater in the controls and in the hockey players. All child subjects were pubertal stage (fanner) I or II, while adolescent subjects were pubertal stage IV or V. There were no differences in daily energy and mineral intakes between sports groups. In both age groups, gymnasts had a higher training volume than other athletic groups. Bone speed of sound (50s) was higher in adolescents compared with the children. Gymnasts had signifieantly higher radial 50S than controls, hockey and soccer players in both age cohorts. Hockey athletes also had higher radial 50S than controls and soccer players in the child and adolescent groups, respectiyely. Child gymnasts and soccer players had greater tibial 50S compared with the hockey players and control groups. Likewise, adolescent gymnasts and soccer players had higher tibial SoS compared with the control group. No interaction was apparent between age and type of activity in any of the bone measures. » Lastly, maturity as assessed by sT and secondary sex characteristics (Tanner stage) was not different between sports group within each age group. Despite the similarity in chronological age, androgen levels and sexual maturity, differences between activity groups were noted in skeletal maturity. In the younger group, hockey players had the highest bone age while the soccer players had the lowest bone age. In the adolescent group, gymnasts and hockey players were characterized by higher skeletal maturity compared with controls. An interaction between the age and sport type effects was apparent in skeletal maturity, reflecting the fact that among the children, the soccer players were significantly less mature than the rest of the groups, while in the adolescents, the controls were the least skeletally mature. Summary and Conclusions: In summary, radial and tibial SOS are enhanced by the unique loading pattern in each sport (i.e, upper and lower extremities in gymnastics, lower extremities in soccer), with no cumulative effect between childhood and adolescence. That is, the effect of sport participation on bone SOS was apparent already among the young athletes. Enhanced bone properties among athletes of specific sports suggest that participation in these sports can improve bone strength and potential bone health.
Resumo:
ABSTRACT Introduction The purpose of this study was to assess specific osteoporosis-related health behaviours and physiological outcomes including daily calcium intake, physical activity levels, bone strength, as assessed by quantitative ultrasound, and bone turnover among women between the ages of 18 and 25. Respective differences on relevant study variables, based on dietary restraint and oral contraceptive use were also examined. Methods One hundred women (20.6 ± 0.2 years of age) volunteered to participate in the study. Informed written consent was obtained by all subjects prior to participation. The study and all related procedures were approved by the Brock University Research Ethics Board. Body mass, height, relative body fat, as well as chest, waist and hip circumferences were measured using standard procedures. The 10-item restrained eating subscale of the Dutch Eating Behaviour Questionnaire (DEBQ) was used to assess dietary restraint (van Strien et al., 1986). Daily calcium intake was assessed by the Rapid Assessment Method (RAM) (Hertzler & Frary 1994). Weekly physical activity was documented by the 4-item Godin Leisure-Time Exercise Questionnaire (Godin & Shephard 1985). Bone strength was determined from the speed of sound (SOS) as measured by QUS (Sunlight 7000S). SOS measurements (m/s) were taken of the dominant and non-dominant sides of the distal one third of the radius and the mid-shaft of the tibia. Resting blood samples were collected from all subjects between 9am and 12pm, in order to evaluate the impact of lifestyle factors on biochemical markers of bone turnover. Blood was collected during the early follicular phase of the menstrual cycle (approximately days 1-5) for all subjects. Samples were centrifliged and the serum or plasma was aliquoted into separate tubes and stored at -80°C until analysis. The bone formation markers measured were Osteocalcin (OC), bone specific alkaline phosphatase (BAP) and 25-OH vitamin D. The bone resorption markers measured were the carboxy (CTx) and amino (NTx) terminal telopeptides of type-I collagen crosslinks. All markers were assessed by ELISA. Subjects were divided into high (HDR) and low dietary restrainers (LDR) based on the median DEBQ score, and also into users (BC) and non-users (nBC) of oral contraceptives. A series of multiple one way ANOVA's were then conducted to identify differences between each set of groups for all relevant variables. A two-way ANOVA analysis was used to explore significant interactions between dietary restraint and use of oral contraceptives while a univariate follow-up analysis was also performed when appropriate. Pearson Product Moment Correlations were used to determine relationships among study variables. Results HDR had significantly higher BMI, %BF and circumference measures but lower daily calcium intake than LDR. There were no significant differences in physical activity levels between HDR and LDR. No significant differences were found between BC and nBC in body composition, calcium intake and physical activity. HDR had significantly lower tibial SOS scores than LDR in both the dominant and non-dominant sites. The post-hoc analysis showed that within the non-birth control group, the HDR had significantly lower tibial SOS scores of bone strength when compared to the LDR but Aere were no significant differences found between the two dietary restraint groups for those currently on birth control. HDR had significantly lower levels of OC than LDR and the BC group had lower levels of BAP than the nBC group. Consistently, the follow-up analysis revealed that within those not on birth control, subjects who were classified as HDR had significantly (f*<0.05) lower levels of OC when compared with LDR but no significant differences were observed in bone turnover between the two dietary restraint groups for those currently on birth control. Physical activity was not correlated with SOS scores and bone turnover markers possibly due to the low physical activity variability in this group of women. Conclusion This is the first study to examine the effects of dietary restraint on bone strength and turnover among this population of women. The most important finding of this study was that bone strength and turnover are negatively influenced by dietary restraint independent of relative body fat. In general, the results of the present thesis suggest that dietary restraint, oral contraceptive use, as well as low daily calcium intake and low physical activity levels were widespread behaviours among this population of college-aged women. The young women who were using dietary restraint as a strategy to lose weight, and thus were in the HDR group, despite their higher relative body fat and weight, had lower scores of bone strength and lower levels of markers of bone turnover compared to the low dietary restrainers. Additionally, bone turnover seemed to be negatively affected by oral contraceptives, while bone strength, as assessed by QUS, seemed unaffected by their use in this population of young women. Physical activity (weekly energy expenditure), on the other hand, was not associated with either bone strength or bone tiimover possibly due to the low variability of this variable in this population of young Canadian women.